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CHAPTER 1: INTRODUCTION 

In Minnesota, during 2012, there were almost 3300 crashes involving a vehicle turning left into 

oncoming traffic, including over 1100 fatal and personal injury crashes (Crash Facts, 2012). The 

Minnesota Strategic Highway Safety Plan (MnDOT, 2007) identified “Improving the Design and 

Operation of Highway Intersections” as a Critical Emphasis Area, with turning-lane construction and 

signal-timing improvements being identified as desired safety strategies. These include provision of left-

turn (LT) lanes and decisions regarding protective or permissive LT phasing.  

In permissive LT treatments, the turning driver is required to yield to opposing vehicles and make the 

turn when presented with a gap, of sufficient duration, between opposing vehicles. Permissive LT 

treatments are used at unsignalized intersections and at signalized intersections where the frequency of 

adequate gaps accommodates the LT demand. Protective LT treatments, used at signalized 

intersections, involve giving exclusive right of way to LT drivers for some portion of a signal’s cycle. 

Protective LT treatments are recommended when the combination of opposing and LT traffic volumes is 

so high that the LT drivers would experience unacceptable delays under permissive treatments. A hybrid 

option is a protective-permissive phase, where a short protective interval is followed by an interval 

where LTs are permitted. 

Protective LT treatments may also be used when special conditions at an intersection make it difficult 

for drivers to judge gaps, increasing the risk of crashes between turning and opposing (or through) 

vehicles. These can include situations where the speeds of the opposing vehicles are high, or where sight 

distance restrictions make it difficult for the LT drivers to identify safe gaps. This latter situation, where 

the layout of opposing LT lanes creates sight distance obstructions when opposing LTs are present, was 

identified by McCoy et al. (2001). One particularly interesting example was an intersection described in 

Davis and Aul (2007), where a conversion from two-way stop control to signalized control, with 

permissive LT phasing on the major approaches, was followed by a clear increase in LT crashes. The LT 

crashes then essentially disappeared when protective LT treatments were implemented. A review of 

police crash reports found that the crash-involved LT drivers tended to identify situations where 

opposite direction LT vehicles waiting for gaps tended to obstruct the view of opposing traffic. However, 

using protective LT treatments when opposing traffic volumes are low can lead LT drivers to believe they 

are being needlessly delayed, while using protective LT treatment when LT volumes are low reduces the 

capacity available for accommodating other movements. As with many traffic engineering decisions, the 

use of protective LT treatments can involve finding the right balance between the safety provided by 

protective LT treatments and the delay those treatments can cause.  

The Highway Capacity Manual can be used to estimate the delays resulting from different LT 

treatments, but estimating their safety effects is still something of an open question. Hauer (2004) 

reviewed 36 reports and papers, and found that protective-only LT treatments tended to have the 

lowest LT crash experience, but that the difference between permissive-only and permissive-protective 

treatments was less clear. Hauer also noted that methodological weaknesses in many of these studies 
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limited their usefulness. In a cross-sectional study involving 197 four-legged signalized intersections 

Wang and Abdel-Aty (2008) found that protected-only LTs were associated with a decrease in the 

frequency of LT crashes, while intersections with permissive-protective treatments tended to have 

higher frequencies of LT crashes than did those with permissive-only treatments. On the other hand, in 

an empirical Bayes before-after study, Srinivasan et al. (2012) found that changing from permissive to 

protective-permissive phasing was followed by a 14% reduction in LT crashes.  

This issue has become even more important with the recent use of a flashing yellow arrow (FYA) to 

indicate permitted LTs, instead of the traditional green circle. Srinivasan et al. (2012) found that the 

frequency of LT crashes increased when protective LT treatments were replaced with permissive LTs 

with a FYA, but that when a FYA replaced green-circle permissive or permissive-protective LT 

treatments, LT crash frequencies decreased. The authors also reported substantial variability in the 

apparent effect of FYAs across the intersections in their sample. There is currently strong interest in 

using FYAs to implement within-day changes in LT treatment. That is, protective LT phasing would be 

used during those times when warranted to reduce delay to LT drivers, or when the risk of LT crashes is 

unacceptably high, and permissive LT treatments indicated by FYAs would be used during those times 

when permissive treatments reduce delay and crash risk is acceptably low.  This requires being able to 

predict how the risk for LT crashes changes as intersection and traffic characteristics change within the 

course of a day.  

When predicting operational impacts, micro-simulation programs allow the analyst to specify a richer 

set of situations than are captured by the Highway Capacity Manual, and it has been suggested that 

simulation programs could play a similar role in predicting safety impacts. In a review of road safety 

simulation efforts, Archer (2005) identified an ability to “tailor a model to meet the specific criteria of an 

existing real-world traffic situation” (p. 122) as the major potential advantage to using safety simulation 

models, but concluded that “… there are few micro-simulation modeling environments that are capable 

of representing the high level of detail and flexibility for this type of work” (p. 135). More recently Young 

et al. (2014) noted “there are signs that simulation will become a useful tool in analyzing the safety of 

the traffic system”, but that there are “a number of areas where further work is required.” (p. 24). These 

include using “the crash as the measure of performance” as opposed to simulated surrogate measures, 

and better knowledge of “driver behavior in crashes.” Davis and Aul (2007) described a Monte Carlo 

simulation model that combined an empirically determined gap selection model with a simple kinematic 

model for braking by the opposing vehicle. Although this model gave, after some calibration 

adjustments, results that were reasonable, further development was needed. In particular, the gap 

selection model in Davis and Aul (2007) was developed using data reported in Davis and Swenson 

(2004), where the sample size was not large and the approach speeds of opposing traffic were relatively 

low. Another weakness was that, since crashes tend to be rare events, many millions of simulated gap 

acceptances were needed to produce a reasonable sample of simulated crashes. This feature is in part 

responsible for recent focus on simulated surrogate measures either as safety indicators or as additional 

independent variables in traditional safety performance functions (Shahdah et al., 2015).  
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This report documents work done to advance the state of art in crash simulation. Chapter 2 describes a 

field study to collect data on drivers’ left-turn gap acceptance and turning times, and development of 

statistical models that can be incorporated into a crash simulation model. Chapter 3 describes how 

Markov Chain Monte Carlo computational tools can be used to quantify uncertainty in reconstruction of 

two-vehicle crashes. Chapter 4 then presents a method for combining the results from Chapter 3 with 

event data recorder pre-crash data to estimate descriptive features of actual left-turn crashes. This is 

applied to several left-turn crashes from the National Highway Traffic Safety Administration’s NASS/CDS 

database. Finally, Chapter 5 describes a left-turn crash simulation model incorporating the findings from 

Chapter 2. Results from Chapter 4, and from a previous case-control study of left-turn crash risk are 

used to perform initial model checking. Chapter 5 also describes a method for simulating crash 

modification effects without having to first simulate crashes as rare outcomes in very large numbers of 

gap acceptances. 
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CHAPTER 2: MODELING GAP ACCEPTANCE AND CLEARANCE 

TIME FOR LEFT-TURNING DRIVERS 

2.1 LEFT-TURN GAP-ACCEPTANCE 

The behavior of drivers when accepting or rejecting gaps affects both the tendency for crashes to occur 

at a location and the operational efficiency of that location and so continues to be a subject of interest. 

The Highway Capacity Manual (2010) uses a step-function model of gap-acceptance, in which all gaps 

below a cutoff gap are rejected while all gaps greater than the cutoff are accepted. However, field 

observation of gap-acceptance quickly reveals, for any cutoff, either instances where gaps below the 

cutoff are accepted or gaps above the cutoff are rejected.  This leads to the idea of allowing the 

probability of accepting a gap to vary with the gap’s features, and several researchers have shown how 

gap-acceptance can be treated as a discrete choice problem (Daganzo, 1981; Mahmassani and Sheffi, 

1981; Madanat et al., 1994; Kita, 1993; Gattis and Low, 1999). This allows modeling of how variables 

other than gap duration might affect a driver’s decision to attempt using a gap, and also allows the 

statistical methods developed for fitting and testing discrete choice models to be used in gap-

acceptance research. As an example, Kita (1993) found that drivers merging onto an expressway were 

more likely to accept shorter gaps as they approached the end of the merging lane. 

It is commonly assumed in gap-acceptance modeling that the time-to-arrival (or gap) of the opposing 

vehicle is the most reliable feature associated with a gap-acceptance decision. However, human factors 

research has suggested that the situation may be more complicated.  For example, Caird and Hancock 

(1994) found, in a laboratory study, that their subjects’ perceived time-to-arrival was affected by the 

perceived size of the oncoming vehicle, with a tendency to perceive larger vehicles as arriving sooner 

than smaller vehicles. Staplin (1995), in a controlled field study, found drivers aged 65 and older tended 

to identify the same distance to the opposing vehicle as acceptable, irrespective of whether the 

oncoming vehicle was traveling at 30 mph or 60 mph. This suggests that older drivers tend to select 

shorter gaps when the speed of the opposing vehicle is high. Davis and Swenson (2004) conducted a 

field study of LT gap-acceptance, in which permitted LTs at a signalized intersection were recorded on 

video, with the camera’s field of view being large enough to also capture the approaches of opposing 

vehicles. From the video it was possible to measure the distance and speed of the opposing vehicles 

when the associated gap became available, as well as the predicted time-to-arrival given by the ratio of 

distance to speed. Davis and Swenson (2004) found the distance of the opposing vehicle was the most 

reliable single predictor of whether or not a gap was accepted. They also found that adding speed 

marginally improved the prediction. Ragland et al. (2006) performed a study of driver’s gap-acceptance 

behavior on permitted left-turns at five intersections in the  San Francisco Bay Area. The researchers 

filtered out gaps of more than 12 sec since these were universally accepted. They took this approach 

since they only used gap as the predictor for modeling driver’s gap-acceptance. This approach, however, 

precludes one from fully understanding the impact of other factors such as speed and distance. More 

recently, Hutton et al. (2014) studied LT gap acceptance behavior using data from the Strategic Highway 

Research Program’s Naturalistic Driving Study (NDS). The intent here was to use gap acceptance as a 
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surrogate for left-turn crash risk, and logistic regression was used to relate the probability of accepting a 

gap to the gap’s duration. They reported that the critical gap, i.e. the gap duration where acceptance 

and rejection are equally likely, tended to be shorter in situations where sight distance was 

compromised.   

Overall, these findings suggest that a gap-acceptance model which uses simple gap duration as its sole 

predictor may give misleading results. 

2.2 FIELD STUDY OF LEFT-TURN GAP ACCEPTANCE 

2.2.1 Data Collection and Reduction 

One advantage to assuming that gap duration is the main determinant of gap-acceptance is the relative 

ease in gathering field data. One simply needs to measure the times between vehicle arrivals using a 

stopwatch, and record the decisions made by waiting drivers. But with advances in computer and video 

technology it is now possible to extract vehicle motion data that were previously difficult to obtain. As 

part of an earlier study (Davis and Mudgal, 2013) video recordings were made of vehicles making left-

turns at the intersection of Robert Street (N-S) and Mendota Road (E-W), in Inver Grove Heights, 

Minnesota and a limited reduction of the video encompassing 39 left-turns, was conducted. In this study 

the data reduction was extended in include 153 left-turns and a total of 749 gap selection decisions. An 

overhead view of this intersection is shown in Figure 2.1, where arrows indicate the paths of the 

conflicting (left-turning and through) vehicles. 

 

Figure 2.1 Data collection site (satellite imagery – Google Maps 2012). 
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At the time of the study Robert Street had two through lanes and one exclusive left-turn lane in both 

directions. In addition, south-bound LTs had a brief protective phase followed by a longer permissive 

phase, indicated by a green circle. Opposing traffic was separated by a double yellow line. The left-

turning behavior of south-bound vehicles waiting for adequate gaps in north-bound through traffic was 

considered in the study. In the Davis and Swenson (2004) study, it was possible to locate the video 

camera on the roof of a tall building overlooking the study intersection. At Robert and Mendota, 

however, no convenient rooftop existed, and so portable data collection equipment developed at the 

Minnesota Traffic Observatory (MTO) was used. This consisted of cabinet, mounted on wheels, which 

contained equipment for digitally recording video, and a battery to power the camera and recording 

system. The digital video camera was mounted on a pole which can be raised to a height of about 30 

feet. Figure 2.2 shows the equipment while Figure 2.3 depicts the camera’s view (looking southward 

along Robert Street) of the intersection. 

Video data had been collected on 11th, 12th and 13th of September 2012. The recording started at about 

3 pm on 11th and ended at about 9 am on 13th. The weather on September 11 was sunny and dry but 

rainy on September 12. The rainy conditions tended to make reduction of video difficult so this study 

focused on reducing and analyzing data from the peak period (3 PM – 6 PM) on September 11.  

 

 Figure 2.2 MTO equipment used in the study. 
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Figure 2.3 Camera view of the intersection (looking southward along Robert Street). 

Left-turn events (arriving, waiting for a gap and accepting a gap) were saved into small video clips using 

VirtualDub (version 1.9.11). Time sequences of x and y coordinates of the vehicle at successive (5 frames 

per second) video frames were obtained using VideoPoint (version 2.5). As one clicks on the video frame 

in VideoPoint, the screen coordinates are recorded and the video frame advances. Because of 

perspective and scale differences between the video image and the real world, the two-dimensional 

rectification method described by Bleyl (1976) was used to develop equations which transformed the 

screen coordinates extracted by VideoPoint to the corresponding real-world coordinates. The 

transformations take the form 
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where the eight ci’s are calibration coefficients, the xm and ym are the real-world coordinates of a point, 

and the xp and yp are the coordinates of that point in the image on the computer screen.  The calibration 

coefficients were found by using eight sets of known coordinate pairs to create a set of sixteen 

simultaneous equations with the coefficients as eight unknowns. After solving for the calibration 

coefficients using least-squares, equation (2.1) gives the corresponding real-world location for anywhere 

on the screen as long as the entire scene is on a single plane. Due to the flat nature of the area under 

observation, this assumption was deemed acceptable, but to check the accuracy of the method other 

known points in the screen image were translated, with results that were accurate to within three feet 

for measurements in a 500-foot field of view.   

The output (spreadsheets in .xls format) obtained from VideoPoint was processed using the R statistical 

language (R Core Team, 2015) to segregate the individual south-bound through vehicles corresponding 
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to each left-turning vehicle waiting for an adequate gap. As indicated above, each file contained the 

screen trajectories (x and y co-ordinates) for the opposing vehicles associated with a left-turning vehicle, 

while inspection of the video gave the left-turning driver’s binary choice to accept or reject a gap. If the 

driver rejected a gap, the next gap began when the front of the opposing vehicle crosses the pedestrian 

crosswalk on Robert Street. The instant when the opposing vehicle’s front bumper crossed the 

pedestrian crosswalk was taken as the instant when this vehicle was no longer generating a gap. This 

process continued until a gap was accepted. The process of extracting parameters was automated with 

R statistical language (R Core Team, 2015) and R2WinBUGS package (Sturtz et al., 2015). Figure 2.4 

summarizes the data reduction and analysis tasks along with the software used to accomplish those 

tasks.   

Gap selections which involved opposing vehicles emerging from a driveway (located at about 500 feet 

upstream of the intersection on Robert Street),  or opposing vehicles stopping because the signal turned 

red, turning right, or turning left, were not considered in the analysis. In addition, situations where the 

LT vehicle did not encounter any oncoming vehicles (gap of unlimited size) at the time of turning left 

were also eliminated. In other words, only those opposing vehicles which were in free flow conditions, 

as either single vehicles or vehicles as part of a moving platoon, were considered in the analysis of gap 

acceptance behavior.  

In addition to data on gaps, the trajectories of the LT vehicles as they made the turning maneuvers were 

also extracted from the video using Videopoint and rectified to give real-world trajectories. The LT 

clearance time was defined as the time between when an accepted gap became available and when the 

turning vehicle passed the point of conflict with the opposing vehicle, and this was obtained for each 

turning movement. 

Figure 2.4 Flow chart for data reduction and analysis. 
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Table 2.1 Descriptive statistics for opposing vehicle characteristics, all vehicles 

  Mean Std. Deviation 25% 50% 75% 
Mean  from 

(Davis & Swenson 2004) 

Gap (sec) 3.7 2.6 1.9 2.9 4.7 3.50 

Speed (mph) 35.6 9.0 28.4 35.4 42.3 21.6 

Distance (feet) 188.2 136.8 99.0 148.6 234.7 135.7 

Clearance Time 

(sec) 
3.0 1.0 2.4 2.8 3.5 --- 

The final data set of this study comprised of 749 gap choices made by 153 left-turning drivers. Table 2.1 

shows summary statistics for the opposing vehicles. Note that the average speed (36 mph) of the 

opposing vehicles was higher than that observed in the Davis and Swenson (2004) study where the 

average speed was 22 mph. Moreover, note the higher average distance in the present study. Both of 

these parameters depict that the characteristics of gap decision for the left-turning drivers were 

different from the earlier study. Table 2.2 and Table 2.3 shows summary statistics for the opposing 

vehicles for accepted and rejected gaps, respectively. Figure 2.5-Figure 2.7 show distributions of gap 

duration, speed, and distance for accepted and rejected gaps. 

Table 2.2 Descriptive statistics for opposing vehicle characteristics, accepted gaps 

  Mean Std. Deviation 25%-ile 50%-ile 75%-ile 

Gap (sec) 7.2 2.7 5.2 6.7 8.7 

Speed (mph) 34.3 7.9 27.8 33.9 40.2 

Distance (feet) 360.0 161.4 250.3 316.2 430.9 

Table 2.3 Descriptive Statistics for Opposing Vehicle Characteristics, Rejected Gaps 

  Mean Std. Deviation 25%-ile 50%-ile 75%-ile 

Gap (sec) 2.8 1.6 1.8 2.5 3.4 

Speed (mph) 36.0 9.3 28.4 36.0 42.6 

Distance (feet) 142.6 82.9 91.2 127.3.3 172.9 
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Figure 2.5 Boxplot for rejected (choice=0) and accepted (choice=1) gap durations, in seconds. 
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Figure 2.6 Boxplot for rejected (choice=0) and accepted (choice=1) opposing vehicle speeds, in mph. 
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Figure 2.7 Boxplot for rejected (choice=0) and accepted (choice=1) opposing vehicle initial distances, in feet. 
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2.3 FITTING GAP ACCEPTANCE MODELS 

As indicated above, the primary objective of this study was to identify physical variables that were most 

reliably associated with gap-acceptance decisions. Logit models of the form: 
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were used to related gap features to the acceptance/rejection decision. Here π i denotes the probability 

that gap i is accepted, xi,k denotes the value of variable k for gap i, and the k denote coefficients to be 

estimated. Nine models, with different combinations of gap, speed, and distance as predictors, were fit 

using maximum likelihood, taking the Bayes posterior means of each opposing vehicle’s features as 

error-free measurements. To assess model fit, the negative log likelihood (or equivalently, the deviance) 

can be used, with smaller values being indicative of better fit. However, since adding parameters to a 

model never decreases the likelihood, this criterion will be biased in favor of less parsimonious models. 

To account for this, penalized likelihood methods add a penalty to the likelihood, with the penalty term 

increasing as the number of parameters increases, but at present there appears to be no consensus on 

which penalty term is most appropriate. Carlin and Louis (2000) have suggested using the Bayesian 

Information Criterion (BIC), given by 
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BIC = -2*LL + p*log(N)   (2.3) 

where LL denotes log likelihood, p is the number of parameters used by the model, and N is the number 

of data points. In addition, the Hosmer-Lemeshow chi-squared test (Hosmer and Lemeshow, 2000), 

which compares an observed distribution of gap choices to that predicted by the fitted model, was 

computed. 

Table 2.4 Estimation results for 5 gap acceptance models using untransformed predictors 

Model Predictors Estimate Standard Error Z-statistic BIC Hosmer-Lemeshow 

1 

Constant -3.4 1.5 -2.3 

421.7 25.0 (0.002) 

gap 0.33 0.30 1.1 

speed -0.06 0.04 -1.5 

distance 0.013 0.006 2.0 

2 

Constant -5.48 0.37 -14.7 

413.3 27.3 (0.001) 

gap 0.94 0.075 12.5 

3 

Constant -0.61 0.36 -1.7 

778.3 13.1 (0.109) 

speed -0.02 0.01 -2.0 

4 

Constant -5.1 0.34 -14.7 

452.9 18.7 (0.017) 

distance 0.017 0.0014 12.2 

5 

Constant -1.9 0.56 -3.4 

415.5 21.3 (0.006) speed -0.11 0.02 -6.0 

distance 0.019 0.0016 12.2 
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Table 2.4 shows estimated coefficients and goodness-of-fit results for five models which used 

untransformed speed, distance, and/or gap as predictors of gap acceptance. Each of these was fitted 

using maximum likelihood, and smaller values of the BIC criterion indicate better fit.  Of these the model 

which used gap only as its predictor had the lowest BIC (413.3), while the model which used speed and 

distance as predictors was only slightly worse (BIC=415.5). Note though that for both of these the 

Hosmer-Lemeshow goodness of fit test was statistically significant at that 0.01 level, suggesting weak fit 

between the models and the data. 

Table 2.5 Estimation results for four models using log-transformed gap, speed, or distance as decision predictors 

Table 2.5 summarizes results from fitting four additional models with similar structure to those 

appearing in Table 2.4, but now with the natural logarithms of the speed, distance and gap as 

predictors. Using BIC, the best fitting model of these is the one with log-gap as the sole predictor 

(BIC=375.5) followed by the model with the logarithms of speed and distance as predictors (BIC=377.9). 

For both of these the Hosmer-Lemeshow tests indicate that hypotheses of adequate fit would not be 

rejected.  Note also that in all cases, the BIC values for the models in Table 2.5 are substantially lower 

than those of their counterparts in Table 2.4 

Model Predictors Estimate Standard Error Z-statistic BIC Hosmer-Lemeshow 

6 

Constant -8.3 0.6 -13.0

375.5 8.8 (0.363) 

Log(gap) 4.8 0.4 12.2 

7 

Constant 0.5 1.2 0.5 

779.9 14.3 (0.074) 

Log(speed) -0.5 0.3 -1.6

8 

Constant -24.6 2.0 -12.5

416.1 7.8 (0.455) 

Log(distance) 4.4 0.4 12.2 

9 

Constant -14.3 2.3 -6.2

377.9 7.8 (0.456) Log(speed) -3.8 0.6 -6.2

Log(distance) 5.0 0.4 12.1 
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The above analyses used only the BIC and the Hosmer-Lemeshow goodness-of-fit test to check model 

adequacy. Since the Hosmer-Lemeshow goodness-of-fit statistic is asymptotically distributed as chi-

squared only when the expected frequencies are “large,” it is recommended that all expected 

frequencies be greater than five to guarantee that the p-value using the chi-squared distribution be 

accurate enough to support hypothesis testing (Hosmer and Lemeshow, 2000).  For example, Table 2.6 

shows the observed (O) and estimated expected (E) frequencies for each decile of the Hosmer-

Lemeshow test from the “best” model so far, Model 6. 

Table 2.6 Observed (O) and estimated expected (E) frequencies for each decile of gap acceptance probability, 
defined by fitted values (Prob.) from Model 6 

Decile Prob. 

Choice = 1 (Accept) Choice = 0 (Reject) 

Total 

O E O E 

1 0.00141 0 0.4198964 75 74.95801 75 

2 0.00401 0 0.18843282 75 74.81157 75 

3 0.00879 0 0.47078035 75 74.52922 75 

4 0.0203 1 1.05712815 74 73.94087 75 

5 0.041 1 2.29528348 74 72.70472 75 

6 0.0932 2 4.81668829 72 69.18331 74 

7 0.192 11 10.198009 64 64.80199 75 

8 0.457 28 22.83854503 47 52.16145 75 

9 0.777 50 46.71567303 25 28.28433 75 

10 0.992 64 68.38547021 11 6.62453 75 

Examining Table 2.6, six estimated expected frequencies are less than the recommended minimum of 

five. We could combine those adjacent six rows to increase the estimated expected frequencies, but 
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doing so would reduce the number of degrees-of-freedom, causing the Hosmer and Lemeshow test to 

lose power.  The developers of the test point out that when Hosmer-Lemeshow goodness-of-fit statistic 

is calculated from fewer than six groups the null hypothesis that the model fits will almost never be 

rejected (Hosmer and Lemeshow, 2000). 

Considering the limitation of using Hosmer-Lemeshow goodness-of-fit test in this case, the overall 

assessment of model fit was examined using a combination of tests including the Hosmer-Lemeshow 

test, the Osius and Rojek (Osius and Rojek, 1992) normal approximation to the distribution of the 

Pearson chi-square statistic, and Stukel’s (Stukel, 1988) test, as suggested by Hosmer et al. (1997). In 

addition, the area under the receiver operating characteristic curve (AUC), indicating how well the 

model predicts (Hanley and McNeil, 1982), was calculated.  

Table 2.7 Goodness-of-fit measures for 5 gap acceptance models using untransformed predictors 

Model BIC Hosmer-Lemeshow Osius&Rojek Stukel AUC 

1 420.9942 
24.968 

(0.001574) 

0.2203661 

(0.8255861) 

50.779 

(9.409e-12) 
0.9428 

2 413.2593 
27.305 

(0.0006262) 

0.2867775 

(0.7742827) 

52.759 

(3.496e-12) 
0.9437 

3 778.2583 
12.925 

(0.1144) 

-0.03751255

(0.9700763) 

7.1018 

(0.007701) 
0.5477 

4 452.9343 
18.849 

(0.01569) 

0.4575692 

(0.647262) 

47.344 

(5.241e-11) 
0.9279 

5 415.6524 
21.303 

(0.006385) 

0.2476949 

(0.8043705) 

50.627 

(1.015e-11) 
0.9403 

Windmeijer (1998) points out that one should use Osius and Rojek test with caution. According to 

Windmeijer, large or small estimated probabilities, near 1 or 0, should be excluded when computing the 

test statistic. In our analysis, thresholds for large and small predicted probabilities were adopted from 

the default value in Weesie’s (1998) STATA (StataCorp, 1999) program, namely 1.0×10-5 and 1-1.0×10-5. 

Stukel’s test is not actually a goodness-of-fit test since “it does not compare observed and fitted values” 
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(Hosmer and Lemeshow, 2000). This test can be used to check the adequacy of the proposed model by 

comparing it to one with two additional predictors that allow for either heavier or lighter tails than the 

standard logit regression model does. Table 2.7 and Table 2.8 summarize the goodness-of-fit measures 

applied to the nine models described above. 

Table 2.8 Goodness-of-fit measures for 4 gap acceptance models using log-transformed predictors 

Model BIC Hosmer-Lemeshow Osius&Rojek Stukel AUC 

6 375.5102 
8.7563 

(0.3633) 

-0.0006457371

(0.9994848) 

16.365 

(0.0002796) 
0.9437 

7 779.8727 
14.14 

(0.07818) 

0.5192112 

(0.6036135) 

8.7716 

(0.00306) 
0.5477 

8 416.7163 
7.9446 

(0.4389) 

0.0004981756 

(0.9996025) 

10.051 

(0.006568) 
0.9279 

9 377.8541 
7.819 

(0.4513) 

-0.0005885429

(0.9995304) 

15.324 

(0.0004704) 
0.9461 

Using a 0.05 significance level, the Osius and Rojek tests indicate that the null hypothesis that model fits 

would not be rejected for all 9 models, while the null hypothesis of adequate fit in Stukel’s tests would 

be rejected for all 9 models. Judging by the AUC, Model 3 and Model 7 show poor predictive ability, 

while other 7 models have good and similar predictive ability. Model 6 still seemed to be the “best” 

model, and further analysis on it was done. In order to improve model fit, two types of modifications 

were made to Model 6: (1) centering the predictor “log(gap)”; and (2) adding a quadratic term of 

predictor “log(gap)”, (log(gap))2.  Table 2.9 summarizes results from fitting Model 6 and its variants 

resulting from two modifications mentioned above. 

As Table 2.9 indicates, centering the predictor generated little difference in coefficient estimates as the 

range of gaps was not very wide. Additional discussion will thus focus on models with the non-centered 

predictors.  
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Table 2.9 Estimation results for 4 gap acceptance models on the basis of Model 6 

Model Predictors Estimate Standard Error Z-statistic

6 

(Intercept) -8.2736 0.6376 -12.98

log(gap) 4.8475 0.3963 12.23 

6-1

(Intercept) -16.664 2.5458 -6.546

log(gap) 15.3885 2.9224 5.266 

(log(gap))2 -3.1762 0.8187 -3.88

6-2

(Intercept) -2.906 0.2283 -12.73

centered log(gap) 4.8475 0.3963 12.23 

6-3

(Intercept) -3.5189 0.3625 -9.707

centered log(gap) 8.3545 1.1517 7.254 

(centered log(gap))2 -3.1762 0.8187 -3.88

The quadratic term of “log(gap)”, (log(gap))2, showed a statistically significant effect on LT gap 

acceptance probability at 0.05 significance level. A likelihood ratio test comparing Model 6 and Model 6-

1 was conducted and the results are displayed in Error! Not a valid bookmark self-reference.. 

 According to the L-R test results, the null hypothesis that the reduced model (Model 6, without 

quadratic term) is equivalent to Model 6-1 was rejected at 0.05 significance level and it could be 

concluded that adding quadratic term statistically significantly improved model fit at 0.05 significance 

level. 
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Table 2.10 Likelihood ratio test results for Model 6 and Model 6-1 

Model #Df Loglik Df Chisq Pr(>Chisq) Signif. codes 

6 2 -181.15

1 15.185 9.745e-05 *** 

6-1 3 -173.12

Table 2.11 Goodness-of-fit measures of Model 6 and Model 6-1 

Model BIC Hosmer-Lemeshow Osius&Rojek Stukel AUC 

6 375.5102 
3.6893 

(0.595) 

-0.001224183

(0.9990232) 

16.365 

(0.0002796) 
0.9437 

6-1 366.9435 
2.2296 

(0.8165) 

2.592826e-05 

(0.9999793) 

1.7532 

(0.4162) 
0.9439 

Table 2.11 shows the goodness-of-fit measures of Model 6 and Model 6-1. Model 6-1, with the 

quadratic term of “log(gap)”, has a lower BIC than Model 6, indicating better fit. The null hypothesis of 

Hosmer-Lemeshow goodness-of-fit test and Osius and Rojek test that model fits the data, would not be 

rejected at 0.05 significance level for both models. Stukel’s test results indicate inadequate fit of Model 

6 but adequate fit of Model 6-1 at 0.05 significance level. AUC values suggest that those two models 

have similar predictive power. To sum up, Model 6-1 seems to be “best” model among all models 

established and has adequate fit. 

Figure 2.8 shows the fitted curves of Model 6 and Model 6-1. 
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Figure 2.8 Fitted curves of Model 6 and Model 6-1. 

Judging from Figure 2.8, Model 6 tends to overestimate gap acceptance probabilities at the tails 

of the gap distribution, short (<4.0 secs) or long (>8.0 secs) gaps. Note also that gap acceptance 

probability in Model 6-1 reaches a maximum that is lower than 1.0. The maximum gap 

acceptance probability estimated from Model 6-1 was approximately 0.88 and the gap 

corresponding to this probability was approximately equal to exp(-15.3885 /(2× -3.1762)) ≈ 

11.27341 seconds, which is within the range of gaps where there were very few rejections 

(Figure 2.8). 

As LT crashes tend to occur only when the available gap is less than LT turning time, interest 

here focused on the shorter gaps where a LT crash is more likely to occur. For this reason, logit 

regression analysis on the best models previously selected, namely Model 6 and Model 6-1, was 

done with cases where gaps greater than the maximum LT turning time (8.0 secs) were 

excluded. 

Table 2.12 shows estimated coefficients for Model 6 and Model 6-1 based on cases with gaps not 

exceeding the maximum LT turning time only.  As can be seen, the quadratic term (log(gap)) 2, now 

shows an insignificant effect on LT gap acceptance. A likelihood ratio test comparing Model 6 and Model 

6-1 was conducted and the results are displayed in Table 2.13.
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Table 2.12 Estimation results for model 6 and model 6-1 based on cases with gap not exceeding the maximum LT 
turning time 

Model Predictors Estimate Standard Error Z-statistic

6 

(Intercept) -9.3363 0.8104 -11.52

log(gap) 5.5719 0.5155 10.81 

6-1

(Intercept) -15.212 4.121 -3.691

log(gap) 13.613 5.391 2.525 

(log(gap)) 2 -2.662 1.736 -1.534

Table 2.13 Likelihood ratio test results for model 6 and model 6-1 based on cases with gap not exceeding the 
maximum LT turning time 

Model #Df Loglik Df Chisq Pr(>Chisq) Signif. codes 

6 2 -155.07

1 2.7771 0.09562 . 

6-1 3 -153.68

(Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1) 

According to the L-R test results, the null hypothesis that the reduced model (Model 6, without 

quadratic term) holds would not be rejected at 0.05 significance level and it could be concluded that 

adding quadratic term did not statistically significantly improve model fit. 

Finally, Table 2.14 shows the goodness-of-fit measures of Model 6 and Model 6-1. Model 6, without the 

quadratic term of “log(gap)”, has slightly lower BIC than Model 6-1, indicating better fit. The null 

hypothesis of Hosmer-Lemeshow goodness-of-fit test and Osius and Rojek test that model fits, would 

not be rejected at 0.05 significance level for both models. Stukel’s test results indicate that both models 

are adequate at 0.05 significance level. AUC values suggest that the predictive probability of those two 

models are almost the same. Since adding the quadratic term would not statistically significantly 

improve model fit at 0.05 significance level, Model 6 was regarded as the best model when only cases 

with gaps not exceeding the maximum LT turning time were considered.  Figure 2.9 shows the fitted 

curves of Model 6 and Model 6-1. 
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Table 2.14 Goodness-of-fit measures for model 6 and model 6-1 based on cases with gap not exceeding the 
maximum LT turning time 

Model BIC Hosmer-Lemeshow Osius&Rojek Stukel AUC 

6 323.2141 
3.4678 

(0.6283) 

-0.001354209 

(0.9989195) 

3.2437 

(0.1975) 
0.9325 

6-1 326.9766 
3.1006 

(0.6845) 

-0.0002782522 

(0.999778) 

0.2408 

(0.8866) 
0.9325 

 

Figure 2.9 Fitted curves of model 6 and model 6-1 based on cases with gaps not exceeding the maximum LT 
turning time. 

As shown in Figure 2.9, after cases with gap exceeding the maximum LT turning time being excluded 

from logit regression analysis, the prediction difference between Model 6 and Model 6-1 is not as 

outstanding as shown in Figure 2.8. It seems that, in previous analyses where all cases were considered, 

the function of the quadratic term was to account for observed rejections of long gaps where LT crashes 

are not likely to occur. 

2.4 ANALYSIS OF LEFT-TURNING TIMES 

As noted in Section 2.2 , the trajectories of the LT turning vehicles were also extracted from the video 
and rectified to give real-world positions. The time elapsing between when a gap became available and 
when the turning vehicle passed the point of conflict was recorded and these became data on clearance 
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times. Table 2.15 presents descriptive statistics for the clearance times while Figure 2.10 is a histogram 
summarizing the distribution of the clearance times. 

 Table 2.15 Descriptive statistics for LT clearance times 

Mean Std. Deviation 25% 50% 75% 

Clearance time (sec) 3.0 1.0 2.4 2.8 3.5 

Figure 2.10 Histogram for left-turn clearance times. 
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Figure 2.11 Scatter plot of Clearance Time vs Gap. 

Figure 2.11 shows a scatterplot of clearance time versus accepted gap duration and there appears to be 

a positive relation between the two. That is, there appears to be a tendency for drivers who accepted 

longer gaps to also take longer to complete their turning movements.  Figure 2.10 shows that the 

distribution of clearance times is skewed, and since the natural logarithm of gap duration was the best 

predictor of gap acceptance, a linear regression model relating log-clearance to time to log-gap was 

estimated and the results of this exercise are shown Table 2.16. Figure 2.12 shows a normal probability 

plot of the residuals from the model described in Table 2.16, and indicates that these are approximately 

normally distributed. 

Table 2.16 Results from regressing the logarithm of clearance time against the logarithm of accepted gap 
duration 

Predictors Estimate Standard Error Z-statistic 

Constant 0.46 0.12 3.7 

Log(gap) 0.32 0.063 5.0 
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Figure 2.12 Normal probability plot of log-clearance time residuals.  
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CHAPTER 3: BAYESIAN UNCERTAINTY QUANTIFICATION FOR 

PLANAR IMPACT CRASHES 

3.1 INTRODUCTION 

As noted in Chapter 1, this project aims to develop a simulation model for left-turn crashes at signalized 

intersections. Timing a traffic signal often involves deciding on whether to offer protected or permitted 

left-turn treatments and the project’s goal is to model how crash risk might vary as traffic conditions 

vary. Chapter 2 described a statistical model of left-turn gap selection, developed from video data 

collected at a typical signalized intersection, while Chapter 5 describes the prototype simulation model 

that combines this gap selection model with a simple kinematic model describing braking by opposing 

drivers. As part of testing and validation it was decided to compare features of crashes as simulated by 

the model to features of actual left-turn crashes estimated from crash reconstruction, including the 

speeds of the involved vehicles at impact. The National Highway Traffic Safety Administration’s 

NASS/CDS database was mined to identify left-turn crashes and Figure 3.1 shows the scene diagram 

from one of these cases. Information about the crash included make, model, and year of each involved 

vehicle, crush measurements and the resulting delta-V estimates, and data downloaded from the 

vehicles’ event data recorders (EDR).  

For this case, the lack of tire mark information, the post impact rotation by the turning vehicle, and the 

possibility that the opposing driver continued steering and braking after the crash suggested that 

reconstruction relying on post-impact skids and conservation of linear momentum would be 

problematic. A spreadsheet-based reconstruction tool for two-vehicle crashes, using planar impact 

mechanics (PIM), has been developed by Brach and Brach (2011) where measurements of a set of 

parameters describing the vehicles and the collision configuration, and values for the vehicles’ pre-

impact speeds, can be used to predict post-impact speeds along with a variety of additional features 

such as total energy loss, crush energy, departure angles, and delta-V values. The tool also supports a 

very flexible method, using nonlinear least-squares (NLS), which can invert the reconstruction model 

and produce estimates of selected input features, such as pre-impact speeds, that best reproduce a set 

of measured outputs. The flexibility of this approach has recently been illustrated by Brach et al. (2015) 

but an open question is how to quantify the uncertainty that results when the model’s inputs are more 

or less uncertain. The complexity of the equations underlying PIM precludes using simple interval 

arithmetic or statistical differentials, but Brach and Brach (2011) illustrate how sensitivity to uncertainty 

in a single input can be assessed by computing NLS estimates from lower and upper bounds on the 

uncertain quantity. For assessing the effect of multiple uncertain inputs Monte Carlo (MC) simulation is 

suggested.  MC simulation has been appearing in the crash reconstruction literature for at least 20 

years, with both Wood and O’Riordain (1994) and Rose et al. (2001) applying MC simulation to two-

vehicle crashes. Researchers have linked Monte Carlo simulation with the simulation model PC-Crash 

(Moser et al., 2003), and have offered suggestions for using MC simulation (Ball et al., 2007). All these 

applications have a common structure: a computer simulates a random sample from probability 

distributions characterizing prior uncertainty about input variables and a model is then used to predict 
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outputs. Those sample inputs which generate outputs satisfying a set of constraints are accepted, while 

input values that fail to satisfy the constraints are rejected. The result is a sample from the conditional 

distribution for the inputs, given the constraints on the outputs. In Bayesian statistics this conditional 

distribution is called a posterior distribution. 

Figure 3.1 Scene diagram from NHTSA case 2012-12-044. 

At about the same time that MC methods began appearing in the crash reconstruction literature, 

statisticians were extending computational techniques originally developed in physics (Metropolis et al., 

1953) to solve an increasingly broad range of inference problems. The basic idea was to use a computer 

to simulate the outcomes of a Markov chain which had been constructed so that its stationary (i.e. long 

run) distribution was the desired posterior distribution, thus the name Markov Chain Monte Carlo 

(MCMC). MCMC methods have been used to reconstruct vehicle-pedestrian crashes, road-departure 

crashes, and two-vehicle crashes where post-crash rotation was not present (Davis, 2003; 2011; 2015).  
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The next section describes the Bayes crash reconstruction methodology. This is followed by example 

applications that include (1) crashes that were previously reconstructed by NLS, (2) staged crashes from 

the Research Input for Computer Simulation of Automobile Crashes (RICSAC) project, and (3) an 

additional staged crash from the 2016 ARC-CSI conference. 

3.1.1 Bayes Crash Reconstruction and Markov Chain Monte Carlo  

To begin, consider estimation of a vehicle’s initial speed, denoted by v, from a known braking distance, 

d. The two quantities are related by the structural equation 

g

v
d

2

2

  (3.1) 

with μ denoting the braking drag factor and g the gravitational acceleration. Given values for μ and d 

equation (3.1) can be inverted to give an estimate of the speed v. For example, if d = 75 feet and μ = 

0.725 then the speed at the start of braking would be 

sec/59)75)(2.32)(725(.2 ftv   

It may happen though that the drag factor is not known precisely or the braking distance is subject to 

measurement error. For instance, bounds such as (0.55 ≤ μ ≤ 0.9) and (65 feet ≤ d ≤ 85 feet) might arise 

when little is known about pavement condition or the vehicle’s braking effectiveness, and where the 

tires have left multiple, poorly-defined skidmarks of different lengths. If we are willing to follow Lindley 

(1991) and Draper (2013), and agree that probability theory is an appropriate logic for reasoning about 

uncertainty, then the problem becomes one of Bayesian inference, where a probability distribution 

describing our prior uncertainty about v and μ is updated, via Bayes theorem, to reflect how this prior 

uncertainty changes when given a measurement of the stopping distance.  For example, if prior to 

obtaining measurements the uncertainty about v was described by a  uniform distribution bounded by 

20 feet/second and 100 feet/second, while the prior uncertainty about μ was described by a uniform 

distribution bounded by 0.55 and 0.9, then the posterior probability distribution for v given 65 ≤ d ≤ 85 

can be computed and is displayed in Figure 3.2, along with v’s uniform prior distribution. The posterior 

mean for v would be 59.2 feet/second with posterior standard deviation of 4.7 feet/second. 
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Figure 3.2 Example prior (blue line) and posterior (red line) probability distributions for vehicle’s speed at the 
start of skid. 
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For this simple example it was possible to compute the posterior distribution for the speed v by 

employing algebra and numerical integration. For more complex models, such as the PIM model, this 

approach will not usually be feasible and here it remains an open question how best to account for 

uncertainty. MC simulation can be implemented by using a computer to simulate random samples from 

the prior distributions for μ and v, computing d using equation (3.1) and then rejecting those (v, μ) pairs 

that lead to d-values not satisfying the constraint 65 ≤ d ≤ 85. This gives a simulated sample of the 

posterior probability distribution f(v, μ|65 ≤ d ≤ 85). The posterior means, variances, and probabilities 

for v can then be computed by simple averaging. Applying this, an initial MC sample of 50,000 produced 

4867 acceptable (v, μ) pairs, with an average initial speed of 59.1 feet/second and a standard deviation 

of 4.7 feet/second. This rejection rate is similar to others reported in the literature (Rose et al., 2001). 

One of the simpler variants of MCMC is the Gibbs sampler (Geman and Geman, 1984). Applying Gibbs 

sampling to the stopping distance example leads to the following iteration: 

1) Set an initial value for the drag factor μ0, let i = 1

2) Sample vi from a uniform distribution bounded by

 )85(2,)65(2 11 gg ii  

3) Sample μi from a uniform distribution bounded by
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50,000 iterations of this algorithm gave an average initial speed of 59.25 feet/second and a standard 

deviation of 4.7 feet/second. Figure3. 3 shows the posterior distribution for the initial speed as 

simulated by the both MC rejection sampling and Gibbs sampling. 

 

Figure 3.3 Posterior distributions for braking distance example. 

3.2 EXAMPLES OF PIM-BASED CRASH RECONSTUCTION USING MCMC 

3.2.1 Examples Comparing Bayes Reconstruction to NLS -Based Reconstructions  

3.2.1.1 Example 1 – Reconstruction of an Intersection Collision, without EDR Data  

Table 3.1 Bayes estimates of Vehicle 2 impact speed for Example 1 

Variable 

Posterior Summary 

NLS Value 

Mean Standard Deviation 2.5 %-ile 97.5 %-ile 

Estimate, Impact speed 

Vehicle 2 (feet/second) 
55.8 5.6 44.8 66.4 55.5 

Our first example is taken from Example 1 of Brach et al. (2015), and involved an angle crash at the 

intersection of a main road and a driveway. Here it was assumed that the post impact directions for 
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both vehicles were known from the crash scene diagram, that normal crush energy loss had been 

measured, and that the initial speed of vehicle 1 was known. Nonlinear least squares (NLS) was used to 

find the estimates for the initial speed of vehicle 1 and the coefficient of restitution that best 

reproduced the exit directions. The coefficient of restitution was constrained to be between 0 and 0.2 

and the predicted crush energy was constrained to be within 50% of the measured value. One useful 

feature of Brach and Brach’s PIM model is that it is very well-documented. The PIM model was coded in 

the MCMC tool WinBUGS (Lunn et al., 2013); simple Monte Carlo simulation was then used to test the 

code and identify coding errors. Once this debugging was complete Bayesian inference was carried out 

assuming that the measured exit angles were subject to normally-distributed measurement error having 

a standard deviation of 5 degrees while the measured crush energy was assumed to have a 

measurement error standard deviation of 13,000 foot-lbs. This latter value was chosen to roughly 

correspond to the ±50% constraint used in Brach et al. (2015). The coefficient of restitution was given an 

informative prior distribution that was uniform over (0, 0.2) while the prior for the impact speed of 

Vehicle 2, uniform over the interval (-100 feet/second, 100 feet/second), was essentially non-

informative. Table 3.1 summarizes the results for this case. 

3.2.1.2 Example 2 – Reconstruction of an Intersection Collision, with EDR Data  

Table 3.2 Bayes estimates of Vehicle 2 impact speed and restitution coefficient for Example 2 

Variable 

Posterior Summary 

Mean Standard Deviation 2.5%-ile 97.5%-ile NLS Value 

Estimate, Impact speed 

Vehicle 2 (feet/second) 
69.5 5.0 60.9 77.6 70.4 

Restitution coefficient 0.13 0.08 0.007 0.28 0.109 

Our second example is taken from Example 2 of Brach et al. (2015), an angle crash between a 

westbound vehicle equipped with an EDR and a southbound vehicle that did not have an EDR. The EDR 

in vehicle 1 provided measurements of the longitudinal and lateral delta-Vs associated with the crash 

and pre-impact speed measurements, at one-second intervals, for approximately five seconds before 

the crash. As with Example 1 the post-crash exit angles for the two vehicles were measured from the 

scene diagram, but now EDR data from vehicle 1 replaced the crush energy measurement. Using pre-

impact data the pre-crash speed of vehicle 1 was set to 27.9 feet/second (19 mph) while the lateral 

delta-V for vehicle 1 was constrained to be 21.01 feet/second. (We recognize that treating EDR pre-

impact data as representing conditions at impact is problematic (Wilkinson et al., 2006; Kusano and 

Gabler, 2011). The goal here was to try and produce results similar to those in Brach et al., 2015.) The 
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targets of the estimation exercise were the pre-impact speed of Vehicle 2 and the coefficient of 

restitution. Table 3.2 summarizes the results of this exercise. 

Example 3 – Reconstruction of a Left-Turn Crash 

Table 3.3 Posterior summaries for Example 3 

Variable 

Original Posterior Summary 

NLS Value 

Mean Standard Deviation 2.5%-ile 97.5%-ile 

Estimate, Impact speed 

Vehicle 2 (feet/second) 
14.2 1.8 10.8 17.9 15.6 

Restitution coefficient 0.1 0.06 0.004 0.19 0.002 

Mu-percent 72.9 7.9 60.9 90.2 69.9 

Posterior with Wider Bounds on Mu-Percent 

Estimate, Impact speed 

Vehicle 2 (feet/second) 
14.3 1.8 10.8 17.9 15.6 

Restitution coefficient 0.1 0.06 0.004 0.195 0.002 

Mu-percent 69.8 10.1 50.0 89.7 69.9 

Our third example follows Example 3 of Brach et al. (2015). Here, left-turning vehicle 1 collided with 

opposing Vehicle 2. Vehicle 1 was equipped with an EDR that yielded delta-V, in both the longitudinal 

and lateral directions, along with measurements of pre-impact speed, at one-second intervals, for about 

five seconds prior to the crash. From the pre-impact data the authors determined that the driver of 

vehicle 1 was accelerating when the crash occurred and estimated the pre-impact speed of vehicle 1 as 

25 mph. As in examples 1 and 2 the goal was to estimate the impact speed of the other vehicle and the 

restitution coefficient. In this case, these were estimated using the EDR data and delta-V values from 

vehicle 1. In addition, the authors concluded that tangential motion occurred throughout the period of 

engagement, and to account for this the impulse ratio was allowed to take on values below its 

maximum. As in the preceding examples Bayes estimates for Vehicle 2’s impact speed and the 

restitution coefficient was computed using WinBUGS, as well as for the impulse ratio. The impact speed 
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for vehicle 1 was treated as known to be 25 mph and the longitudinal and lateral delta-Vs for vehicle 1 

were -6.95 feet/second and -8.95 feet/second, respectively. In order to correspond to the constraints 

used in Figure 3.2 of the original paper, the prior distribution for the restitution coefficient was taken to 

be uniform between 0 and 0.2, the prior for the ratio between the impulse ratio and its maximum value 

(mu-percent) was taken to be uniform between 60% and 100%, and the prior for Vehicle 2’s impact 

speed was uniform between 5 feet/second and 50 feet/second. The delta-Vs were assumed subject to 

normal measurement error with a standard deviation of 1.0 feet/second. 

The upper half of Table 3.3 summarizes the posterior distributions for Example 3’s three target quantities 

and compares these to the estimates presented in Figure 3.3 of the original paper, while Figure 3.4 

displays graphs of the posterior densities as computed by WinBUGS. Two interesting features deserve 

comment. First, the posterior for the restitution coefficient is (almost) uniform between 0 and 0.2, which 

was its assumed prior. This means that the measured delta-Vs were essentially non-informative for the 

restitution coefficient. Second, the posterior for mu-percent is obviously truncated at the lower bound of 

60%. This implies that the observed delta-Vs are consistent with lower values of mu-percent and unless 

there is strong prior reason for the 60% lower bound the estimation should be redone with a different 

lower bound. This was done with a lower bound of 20%. The resulting posterior distributions are shown 

in Figure 3.5 while the resulting posterior summaries are shown in the lower half of Table 3.3.  

 

Figure 3.4 Posterior densities for Example 3’s target quantities with 60% lower bound for mu-percent. 



33 

Figure 3.5 Posterior densities for Example 3’s target quantities with 20% lower bound for mu-percent. 

3.2.2 Reconstruction of Staged Collisions  

This section describes Bayesian reconstruction of six staged collisions conducted as part of the project 

Research Input for Computer Simulation of Automobile Crashes (RICSAC) (Jones and Baum 1978). The 

goal was to compare the estimates of impact speeds to known values. RICSAC cases 1, 6, and 7, involving 

60o front-side-impacts and cases 8, 9, and 10, involving 90o front-to-side impacts, were selected as 

approximating the conditions arising in left-turn crashes. NLS reconstructions of these collisions have 

been described in (Brach 1991), and measurements of vehicle and collision parameters were taken from 

that reference’s Table 10.1. Lateral and longitudinal delta-V measurements for both vehicles were 

developed from the accelerometer reductions presented in Table 2-a of Brach and Smith (2002), and 

these were used to approximate EDR data. 

In addition to EDR data, NASS/CDS cases can also contain estimates of delta-V based on crush 

measurements, estimates of principal directions of force (PDOF), and scale diagrams which can support 

estimating post-impact directions, and we were interested in seeing if incorporating these additional 

data might improve on estimates based solely on EDR data.  In the preceding section measurement 

error uncertainties were chosen so as to approximate the reported NLS reconstructions; for the RICSAC 

cases existing literature was reviewed in order to identify reasonable values for the measurement 

uncertainties. Niehoff et al. (2005) reported results from several staged collisions where delta-V 

estimates from EDRs were compared to estimates from research-grade instrumentation. An analysis of 
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data listed in their Table 4 suggested that EDR measurement errors could, at least to a first 

approximation, be taken to be normally distributed with a standard deviation of about 3.2 feet/second. 

Hampton and Gabler (2010) reported a comparison of delta-V estimates from EDRs to those made from 

crush measurements, finding that the crush-based estimates tended to underestimate delta-Vs, with 

considerable scatter.  We used the regression equation in their Figure 1 to relate crush-based delta-V 

estimates to those predicted by PIM. Kusano and Gabler’s (2013) Figure 12 compared estimates of PDOF 

from the NASS/CDS database to directions computed using EDR data. No statistical analysis was 

reported but the figure suggests that the NASS/CDS estimates of PDOF were approximately unbiased 

and scattered roughly ± 20o around the EDR estimates. For our experiment we then chose to treat the 

PDOF estimation errors as normally distributed with standard deviations of 10o. Finally, measurement 

error for the post impact directions was also taken to be normally distributed with a standard deviation 

of 10o. The values used in these tests are summarized in Appendix B. 

Table 3.4 Posterior summaries of estimated impact speeds (feet/second) for RICSAC tests: EDR data only 

RICSAC 

Crash 
Vehicle  

Posterior Summary of Impact Speeds (feet/second)  

Observed 

Value 
Mean Standard Deviation 2.5%-ile 97.5%-ile 

1 
1 21.7 6.4 9.4 34.5 29.0 

2 29.5 3.6 22.5 36.6 29.0 

6 
1 23.1 5.4 12.5 33.6 31.5 

2 36.0 3.9 19.3 34.5 31.5 

7 
1 36.5 5.5 25.9 47.3 42.7 

2 39.6 11.6 17.6 61.4 42.7 

8 
1 29.6 4.3 21.0 38.0 30.5 

2 47.5 10.6 26.9 68.0 30.5 

9 
1 32.0 4.5 24.0 40.1 31.1 

2 29.1 9.3 11.2 47.6 31.1 

10 
1 46.4 4.2 38.3 54.7 48.8 

2 41.1 7.2 26.8 55.1 48.8 
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Table 3.5 summarizes the estimates from the second computational experiment, where measurements 

of post-impact direction, PDOF, and crush-based speed were included. Since reliable measurements of 

these quantities were not available idealized values for the measurement were taken to be the values 

developed from the accelerometer measurements presented in Brach and Smith (2002) but subject to 

measurement errors as described above. These results should thus be interpreted as reflecting ideal, 

potential reductions in uncertainty. The range of posterior standard deviations for this enhanced data 

scenario was 3.5 feet/second to 7.7 feet/second and the 95% confidence intervals widths ranged from 

about 13 feet/second to 31 feet/second. Overall, including the idealized supplemental data improved 

the accuracy of the speed estimates. 

Table 3.5 Posterior summaries of estimated impact speeds (feet/second) for RICSAC tests: EDR data 
supplemented by post impact angle, PDOF, and crush-based speed estimates 

RICSAC 

Test 
Vehicle 

Posterior Summary of Impact Speeds (feet/second) 

Observed 

Value 
Mean Standard Deviation 2.5%-ile 97.5%-ile 

1 
1 25.7 3.5 19.2 32.9 29.0 

2 36.6 5.5 26.2 47.8 29.0 

6 
1 25.0 3.4 18.5 31.8 31.5 

2 33.1 5.5 22.8 44.4 31.5 

7 
1 36.5 3.9 29.1 44.3 42.7 

2 40.3 6.4 28.4 53.3 42.7 

8 
1 29.5 3.6 22.5 36.6 30.5 

2 49.2 7.7 34.6 64.9 30.5 

9 
1 31.3 3.4 24.7 38.1 31.1 

2 32.3 5.8 21.9 44.5 31.1 

10 
1 45.7 3.6 38.7 52.9 48.8 

2 43.6 5.6 33.1 54.9 48.8 
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3.2.3 Application to Additional Staged Collision  

One of the staged collisions at the 2016 ARC-CSI conference was a head-on collision between a 2011 

Ford Crown Victoria and a 2016 Volkswagen Passat. The target impact speed for both vehicles was 30 

mph (for a 60 mph closing speed) and both vehicles were driven remotely by Phantom Drivers. Both 

vehicles were instrumented with IST accelerometers and V-Box video/GPS systems to record crash 

pulses and impact speeds, and both vehicles were weighed prior to the test. Table 3.6 summarizes the 

test vehicle specifications and results from the test instrumentation. 

Table 3.6 Vehicle specifications and results from test instrumentation 

Vehicle # Model Year Make/Model Scale Weight 

Impact Speed Delta-V 

V-Box Video IST 

1 2011 Ford Crown Victoria 4180 lbs -- 28.5 mph 27.2 mph 

2 2016 Volkswagen Passat 3340 lbs 34.5 mph 35.4 mph 36.3 mph 

Figure 3.6 shows the longitudinal delta-Vs for the test vehicles computed by integrating the acceleration 

data from the IST accelerometers. 
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Figure 3.6 Longitudinal delta-Vs for the Crown Victoria and the Passat, computed by integrating IST 
accelerometer data. 

A main objective for this test was to estimate the vehicle impact speeds in a head-on crash, using crash 

reconstruction methods and data from the vehicles’ event data recorders (EDR), and then compare 

these to measurements made by the test instrumentation.  As Figure 3.7 shows though, the achieved 

configuration was a partial overlap, leading to significant post-impact rotation and compromising 

analyses that assumed co-linearity of the centers of mass. Also, the V-Box system on the Crown Victoria 

suffered a data loss, while no EDR data, either pre-crash or crash pulse, were obtained from the Passat. 

The Crown Vic’s EDR did a little better; the Airbag Control Module yielded a longitudinal crash pulse with 

a delta-V of -29.7 mph but pre-crash data were not available. So the objective was modified to address 

the following question: Given the limited EDR data, to what extent can these be leveraged with 

additional data, either from the scene or from the vehicles, to produce defensible estimates of impact 

speeds? 
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Figure 3.7 Overhead view showing the orientation of the test vehicles at impact. 

The first source of supplemental data was estimates of overall delta-V computed from the vehicles’ 

crush. Scale drawings of both vehicles, provided as part of the data given to conference attendees, were 

used to measure their crush profiles, as illustrated in Figure 3.8. Table 3.7 shows the crush 

measurements for both vehicles along with their estimated delta-Vs.  The stiffness coefficients were 

provided by 4NXPRT Systems, also as part of the data given to conference attendees. Note that for both 

vehicles the delta-Vs estimated from crush were lower than those reported by the test instrumentation, 

consistent with findings reported by Hampton and Gabler (2010). 
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Figure 3.8 Damage diagram and points of crush measurement for the Crown Victoria. 

Table 3.7 Crush analysis for ARC-CSI 2016 Crash Test 2 

Vehicle 

Crush Profiles (feet) Stiffness Coefficients 
Delta-V 

(mph) 
C1 C2 C3 C4 C5 C6 L d0 d1 

1 (Crown Vic) 2.4 2.3 1.7 1.0 0.5 0 5.2 33.95 103.65 25.1 

2 (Passat) 1.6 1.7 1.5 1.0 0.4 0 5.0 32.68 151.55 30.5 

The second source of supplemental data was the changes in direction experienced by the test vehicles 

during the crash. In the field these would be estimated from the scene map and vehicle rest positions, 

but a scarcity of landmarks in the scene diagram made it difficult to identify the vehicles’ pre-impact 

directions. To serve as a proxy for scene-based direction measurements an overhead video of the crash 

was loaded into the program Videopoint, coordinates for pre- and post-impact trajectories for the 

vehicles were determined using Videopoint’s point and click feature, and pre-and post-impact directions 

were then estimated using linear regression. Taking the Passat’s pre-crash orientation as defining the 

positive x-direction, this gave post-impact directions of 73o for the Crown Victoria and -126o for the 

Passat. 
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Figure 3.9 Pre- and post-impact trajectories measured using Videopoint. 

As described above, our Bayesian version of planar impact mechanics was used to estimate the vehicles’ 

impact speeds. Table 3.8 summarizes the input data for the PIM model, and also compares the 

measured crash data to values predicted from impact speeds of 28.5 mph for the Crown Vic and 34.5 

mph for the Passat. The results displayed in Table 3.8 suggest that the crash measurements (Crown Vic 

delta-V, crush delta-V’s, and post-impact directions) should be informative regarding the vehicles’ 

impact speeds.  

Table 3.9 summarizes the results on uncertainty reduction as provided by different data scenarios. The 

“No Measurements” scenario was essentially a simulation of the prior uncertainties regarding the 

impacts speeds as uniform between 5 feet/sec and 100 feet/sec (3.4 mph to 68.2 mph). The uncertainty 

reduction provided by a data configuration was assessed by comparing its posterior standard deviations 

to those from the “No Data” scenario. As expected, the greatest reduction in uncertainty occurred when 

all three data items were taken into account; the posterior standard deviations were reduced to 2.0 

mph and 2.3 mph for the Crown Vic and the Passat, respectively. Almost as good was the uncertainty 

reduction provided by the single EDR delta-V from the Crown Vic’s Airbag Control Module (ACM) plus 

the exit angles. By itself the EDR delta-V from the Crown Vic provided only a marginal reduction in 

uncertainty, as did combining the delta-V from the EDR and with those from the crush analysis. Note 

that the 95% confidence bounds tend to catch the “Ground Truth” impact speeds from test 

instrumentation, although in some cases the bounds are so wide as to be uninformative. Figure 3.10 

illustrates the prior distribution for both vehicles and posterior distributions generated when all 

available data was taken into account. Compared to the flat prior probability distribution the posterior 

distributions for both impact speeds are highly, but not perfectly, informative. 
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Table 3.8 Summary of measurements used to estimate impact speeds, together with data items predicted by 
impact speeds of 28.5 mph and 34.5 mph. measured values of data items are shown in parentheses 

Feature Crown Vic (Vehicle 1) Passat (Vehicle 2) 

Weight (lbs) 4180 3440 

Yaw Inertial Moment (lb-ft-sec2) 2973 2155 

d (feet) 5.8 5.2 

φ (degrees) 18 6 

θ (degrees) 0 0 

e 0.1 

Γ (degrees) 20 

μ% 100 

Predicted and Measured Data Items 

Longitudinal Δv (feet/second) -43.6 (-44.4) -- 

Crush Δv (feet/second) 36.8 (38.4) 44.7 (46.6) 

Exit angle (degrees) 73 (70.5) -126 (-110.9)
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Table 3.9 Summary of Posterior Distributions for Impact Speeds. All Speeds are in miles/hour 

Data Scenario Vehicle 

Posterior Summary 

“Ground 

Truth” 

Mean St. Dev.  2.5%-ile 97.5%-ile 

EDR delta-V, crush 

delta-Vs, exit 

angles 

Crown Vic 29.1 2.0 25.2 33.0 28.5 

Passat 33.9 2.3 29.4 38.4 35.4 (34.5) 

EDR delta -v, 

exit angles 

Crown Vic 29.4 2.2 25.1 33.7 28.5 

Passat 34.2 2.5 29.3 39.2 35.4 (34.5) 

crush delta-Vs, exit 

angles 

Crown Vic 28.5 4.4 20.1 37.1 28.5 

Passat 33.2 5.1 23.4 43.2 35.4 (34.5) 

EDR delta-V only 

Crown Vic 32.1 16.3 4.9 60.4 28.5 

Passat 31.5 16.3 4.9 60.4 35.4 (34.5) 

EDR delta-V, crush 

delta-Vs 

Crown Vic 31.9 16.3 4.9 60.1 28.5 

Passat 31.2 16.3 4.7 59.7 35.4 (34.5) 

No Measurements 

Crown Vic 35.8 18.7 5.0 66.6 28.5 

Passat 35.9 18.6 5.0 66.6 35.4 (34.5) 
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Figure 3.10 Prior and posterior probability distributions for impact speeds. 

3.3 SUMMARY AND CONCLUSIONS 

As noted earlier, nonlinear least squares (NLS) has been used to estimate impact speeds from different 

combinations of EDR, crush, and exit angle measurements from two-vehicle planar impact crashes, but 

an open question is how to quantify the resulting uncertainty. After illustrating the basic ideas with a 

simple computational example, Markov Chain Monte Carlo (MCMC) was applied to (1) several crashes 

from the literature which have been previously reconstructed using NLS, (2) six staged collisions, and (3) 

a staged collision from the 2016 ARC-CSI conference. As would be expected, in each case the MCMC 

point estimates were similar to those produced by NLS, but defensible confidence intervals for the 

estimates were also produced. For the six staged crashes posterior 95% confidence intervals for the 

impact speeds tended to catch the observed values but the uncertainty associated with the estimated 

impact speeds varied substantially. For the ARC-CSI crash test, vehicle exit angles plus longitudinal delta-

V from one vehicle were sufficient to substantially reduce prior uncertainty regarding impact speeds. 

Further work should focus on identifying defensible measurement error models for the measured 

inputs. For example, we used the same measurement error for EDR-based lateral and longitudinal delta-

V estimates although Niehoff et al. (2005) reported data only for longitudinal estimates. As EDRs which 

record both longitudinal and lateral crush pulses become more common it should be possible to 

determine not only that whether or not lateral and longitudinal delta-V measurements have different 

uncertainties but also to assess their correlation. Although our code allows for correlated measurement 

errors, in our computational examples we treated lateral and longitudinal EDR data as uncorrelated, 

mainly because of a lack of information regarding reasonable values for the correlations.  
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In summary, for cases where a reconstruction model can be expressed as a set of algebraic equations, 

MCMC offers a very flexible method for computing estimates from measurements that vary in type and 

quality. A challenge for future research is to identify reasonable measurement error models for the data 

that can be included in a reconstruction. 
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CHAPTER 4: BAYESIAN ESTIMATION OF DRIVERS’ ACTIONS  IN 

LEFT-TURNING CRASHES 

4.1 INTRODUCTION 

Although road crash reconstruction is most often undertaken to support legal proceedings, it has also 

been used in road safety research. Examples include the Tri-Level Study (Treat et al., 1979), work done 

at the Center for Automotive Safety Research regarding speed in fatal and serious crashes (Kloeden et 

al., 1997), and research into the impact conditions of road-departures crashes (Mak et al. 2010). There is 

also increasing interest in using reconstructed crashes to assess the potential of vehicle automation to 

reduce the frequency and severity of crashes (Rosen et al., 2010; Kusano and Gabler, 2011; Scanlon et 

al., 2016; Sander 2017); Davis (2014) proposed warrants (i.e. sufficient conditions) for using 

reconstructed crashes to estimate a crash modification factor associated with a safety-related 

intervention. Key features of this treatment were a structural equation and a set of input variables, 

called elements, so that evaluating the structural equation at a given assignment of values to the crash 

elements determined whether or not a crash occurred. For example, in a gap selection event the crash 

elements could be the time needed by a gap selector, such as a pedestrian or a driver making a left-turn, 

to clear the conflict point, the position and speed of an opposing vehicle when the selector initiates 

movement, and the reaction time and deceleration of the opposing driver. The structural equation could 

be a simple kinematic model that describes whether or not the selector and the opposing vehicle arrive 

at the conflict point at the same time. 

For an actual crash, a structural model and estimates for the crash elements provide an explanation of 

why the crash occurred, while a sample of estimated elements from crashes of a given type could be 

used to cluster the crashes into common scenarios. Crash elements tend to include pre-crash positions 

and actions, and obtaining reliable estimates of elements has been challenging. However, with the 

increasing prevalence of event data recorders (EDR) providing pre-crash data, this situation might be 

changing. Gabler and Hinch (2009) conducted an exploratory investigation of drivers’ behavior prior to 

rear-ending crashes, producing aggregate measures of brake application and throttle release times. 

Kusano and Gabler (2011) used pre-crash speed and brake application data to estimate time to collision 

at the start of braking in rear-ending crashes, and Scanlon et al. (2016) used pre-crash speed data to 

reconstruct vehicle trajectories in angle crashes.   

This chapter describes a similar approach in that pre-crash speed data from EDRs are used to 

reconstruct the pre-crash movements for a left-turning vehicle and for an opposing vehicle initially 

traveling straight (LTOP). The reconstructed movements are then used to estimate five crash elements: 

t1 -  the time between when the turning driver begins the turn and when he or she reaches the 
conflict point, 

v2 – the speed of the opposing vehicle when the turn begins, 
x2 – the opposing vehicle’s distance from the conflict point when the turn begins, 
r2– the opposing driver’s braking reaction time, 
a2 – the opposing driver’s braking deceleration. 
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The method will be illustrated using data from a staged crash test and from six cases from the National 

Highway Traffic Safety Administration’s (NHTSA) NASS/CDS database. 

4.2 BAYESIAN CRASH RECONSTRUCTION 

The basic tenets of the Bayesian approach to crash reconstruction are: 

1) the results of a crash reconstruction are more or less uncertain,

2) probability theory is an appropriate logic for reasoning about this uncertainty,

3) uncertainty in expert opinion can be quantified using probability distributions.

A probability distribution which express a reconstructionist’s prior opinion about important crash 

features is updated, using Bayes theorem from probability theory, to produce a posterior distribution 

which accommodates the available evidence (Davis, 2003; 2011; 2015). To illustrate the Bayesian 

approach, Figure C. 1 in the Appendix shows part of an after-crash scene diagram, prepared by 

NASS/CDS investigators for Case 2012-12-044, in which a 2011 Chevrolet Malibu (Vehicle 1) attempted 

to turn left across the path of a 2000 Chevrolet Blazer (Vehicle 2). As part of the investigation, EDR 

reports for both vehicles were downloaded and imaged using the Bosch CDR tool. For the Blazer this 

crash was a non-deployment event and so no crash pulse was recorded, but the Malibu’s EDR gave 

longitudinal and lateral delta-V’s of -8.8 mph and -7.45 mph, respectively. The NASS/CDS case file also 

included estimates of delta-V for both vehicles derived from their crush profiles and estimates of the 

principal directions of force (PDOF) for both vehicles. 

Chapter 3 described a Bayesian adaptation of the planar impact model (Brach and Brach, 2011) for 

estimating the impact speeds of vehicles involved in two-vehicle crashes, along with tests of this method 

using data from several instrumented crash tests. For NASS/CDS Case 2012-12-044, scale drawings of 

the two vehicles were prepared showing their crush surfaces and the collision impact center was then 

estimated by overlaying these drawings. Vehicle dimensions and inertial parameters were taken from 

Expert Autostats (4NXPRT Systems, 2014). For this case the EDR pre-crash data indicated that the Malibu 

stopped prior to impact so the problem was to estimate the Blazer’s impact speed using the delta-V’s 

from the Malibu’s EDR, the NHTSA estimates for delta-V and PDOF from the crush analyses, and the 

vehicles’ exit angles estimated from the scene diagram. The prior distribution for the Blazer’s impact 

speed was taken to be uniform between 2 and 66 mph and, since for this problem analytic application of 

Bayes theorem was intractable, the posterior distribution was simulated using the Markov Chain Monte 

Carlo (MCMC) software WinBUGS (Lunn et al., 2013). Figure 4.1 shows the assumed prior distribution 

and simulated posterior distribution for the Blazer’s speed at impact. 
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Figure 4.1 Prior and posterior probability distributions for Blazer’s speed at impact, NASS/CDS Case 2012-12-044. 
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4.2.1 Bayes Estimation of Crash Elements  

4.2.1.1 Data Acquisition 

Since it is necessary to relate the actions of an opposing driver to the actions of the turning driver, 

estimating the five crash elements (t1, v2, x2, r2, a2) requires pre-crash data from both vehicles involved in 

a LTOP crash. The NASS/CDS EDR reports for 2012 and 2013 were downloaded and scanned to identify 

cases where EDR reports were available for two vehicles. Each of these cases was then viewed using the 

NASS/CDS case viewer to identify LTOP crashes, and the EDR reports were reviewed to identify those 

LTOP cases where both vehicles had at least five seconds of pre-crash data. This left three cases from 

2012 and five from 2013. Three of the cases involved two General Motors (GM) vehicles while the other 

five involved combinations of GM, Ford, Chrysler, and Toyota vehicles. The six cases involving non-

Toyota vehicles will be presented here. 

4.2.1.2 Illustration Using NASS/CDS Case 2012-12-044 

As noted above, Figure C. 1 shows the post-crash diagram prepared for NASS/CDS Case 2012-12-044. 

NHTSA investigators downloaded and imaged the pre-crash data from both vehicles’ EDRs and, a subset 

of these are shown in Table 4.1. 
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Table 4.1 EDR pre-crash data for NASS/CDS Case 2012-12-044 

Vehicle 1 (Malibu) 

Time (seconds) Speed (mph) Engine RPM Percent Throttle Brake Switch 

-5 6 1216 15 ON 

-4 3 1152 16 ON 

-3 6 2304 36 OFF 

-2 12 2432 40 ON 

-1 0 1088 21 ON 

Vehicle 2 (Blazer) 

Time (seconds) Speed (mph) Engine RPM Percent Throttle Brake Switch 

-5 42 2240 59 OFF 

-4 44 2368 54 OFF 

-3 45 1856 0 OFF 

-2 41 1088 0 ON 

-1 31 768 4 ON 

To start, assume for illustrative purposes that the two EDRs were synchronized and that Time=0 

represented the time of the crash for both vehicles; these assumptions will be relaxed later.  Under these 

assumptions Table 4.1 suggests that the Malibu was initially entering the intersection at a low speed but 

that between 3 and 4 seconds prior to the crash the Malibu’s driver began accelerating to make the turn. 

However, shortly after starting to turn, the Malibu’s driver applied the brake and came to a stop in the 

intersection. The Blazer was approaching the intersection at 40-45 mph when the Malibu began to turn 

across its path and between 2 and 3 seconds before the crash the driver of the Blazer applied the brake, 

slowing the vehicle but not avoiding the crash. Using the pre-crash speeds one can estimate an 

acceleration (a) between recorded time points as 




 ie vv

a    (4.1) 
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where vi denotes the speed at the beginning of an interval, ve is the speed at the end of the interval, and 

Δ denotes the interval’s duration. The distance (d) traveled during an interval is then 

2

2

a

vd i   (4.2) 

Wilkinson et al. (2006) reported that pre-crash data from GM Sensing and Diagnostic Modules (SDM) can 

be shifted significantly in time relative to the SDM’s reported times, so to synchronize the two sets of pre-

crash data it is necessary to estimate, for each vehicle, the time elapsing between Time=-1 and the crash. 

The impact speed for the Blazer was estimated using the Bayesian version of the planar impact model 

described above. The EDR data showed that the Malibu had stopped when the crash occurred, and the 

Bayesian planar impact reconstruction gave 40.1 feet/second as the posterior mean for the Blazer’s 

impact speed. Taking this as the Blazer’s impact speed, and extrapolating the braking deceleration 

between times -2 and -1 (14.67 feet/second2) to the period between Time=-1 and impact, it is possible to 

estimate the time between the last recorded pre-crash data point and the impact 

sec37.0
67.14

5.451.40
0 




  (4.3) 

Applying this time shift to the Blazer’s pre-crash data and using equations (4.1) and (2) then gives a pre-

crash trajectory for the Blazer, displayed in Table 4.2. 

Since the Malibu stopped prior to impact a similar estimate of its final Δ0 is not available so for the 

purposes of illustration Δ0=0.5 seconds will be used. (A method allowing for uncertainty in this value will 

be presented later.) Knowing the time shifts (Δ0) for each vehicle allows approximate synchronization of 

the pre-crash data from both EDRs, and plotting a subset of these on a common time scale gives Figure 

4.2. Figure 4.2 shows the estimated speed and position data for the Blazer, along with the Blazer’s Brake 

Status, with 0 for OFF and 100 for ON.  Figure 4.2 also shows the Percent Throttle for the Malibu, 

multiplied by 10.  Note that the time shift for the Malibu, 0.5 seconds, is different from that for the Blazer, 

0.37 seconds. The marked increase in the Malibu’s throttle between 2.5 and 3.5 seconds prior to the crash 

indicates a start of the turning movement sometime during that interval.  3.5 seconds prior to the crash 

the Blazer was approximately 205 feet from the impact point while 2.5 seconds prior to impact the Blazer 

was approximately 140 feet from the impact point, giving a range of possible distances when the turning 

movement started. The Blazer’s speed was approximately constant during this interval, at 65 feet/second. 

The driver of the Blazer then started braking between 1.37 and 2.37 seconds prior to the crash. Applying 

interval arithmetic to these values gives interval estimates for reaction time of the Blazer’s driver and the 

apparent time gap (x2/v2) accepted by the Malibu’s driver.  These are summarized in Table 4.3. 
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Table 4.2 Estimated trajectory for opposing vehicle (Blazer) in NASS/CDS Case 2012-12-144. 

Time Prior to Crash 

(seconds) 

Speed 

(feet/second) 

Speed (mph) Distance from 

Impact (feet) 

Brake Switch 

-4.37 61.6 42 259.9 OFF 

-3.37 64.5 44 196.8 OFF 

-2.37 66 45 131.5 OFF 

-1.37 60.1 41 68.5 ON 

-0.37 45.5 31 15.7 ON 

0 40.1 27.3 0 -- 

 

. 

 

Figure 4.2 Illustrative graph showing the trajectory of the opposing vehicle (Blazer) and actions by both drivers 
in NASS/CDS Case 2012-12-044. 
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Table 4.3 Illustrative elements for NASS/CDS Case 2012-12-144. The Malibu (Vehicle 1) is the turning vehicle, the 
Blazer (Vehicle 2) is the opposing vehicle 

Feature Lower Bound Upper Bound 

Malibu Time to Collision (t1) 2.5 sec 3.5 sec 

Blazer Initial Speed (v2)  64.1 feet/sec 65.8 feet/sec 

Blazer Initial Distance (x2)  140.3 feet 205.2 feet 

Apparent Gap 2.1 sec 3.2 sec 

Blazer Driver Reaction Time (r2) 0.1 sec 2.1 sec 

Blazer Driver Deceleration (a2) 14.7 feet/sec2  14.7 feet/sec2 

In practice the data used by this estimation method are more or less uncertain which leads to additional 

uncertainties in the elements’ estimates. The pre-crash speed data obtained from EDRs are subject to 

measurement errors (Bortles et al., 2016), the estimates of pre-crash speeds obtained via planar impact 

reconstruction have uncertainties which can be quantified, and there is non-trivial prior uncertainty 

regarding Δ0 for the Malibu (Wilkinson et al., 2006). If one could specify appropriate probability 

distributions describing these uncertainties, the distributions could be coupled with the computational 

procedure described above and Monte Carlo (MC) simulation used to simulate distributions for the crash 

elements. Initial applications of this approach, however, identified a serious weakness: the MC samples 

tended to contain sets of elements where the opposing driver could stop before reaching the collision 

point. That is, possible outcomes consistent with the uncertainties in the pre-crash data contained non-

crash as well as crash events, and it was necessary to restrict the MC sampling so that only crash-producing 

estimates were generated. One way to do this is via Markov Chain Monte Carlo (MCMC) sampling, where 

a realization of a stochastic process called an ergodic Markov chain is generated in such a way that the 

chain’s stationary distribution is the target distribution (Lunn et al., 2013). As with MC sampling, 

descriptive summaries can then be computed by simple averaging.  

Using the MCMC software WinBUGS (Lunn et al., 2013) the model described above was coded and used 

to generate Bayesian posterior distributions for the elements describing NASS/CDS case 2012-12-044. 

Since the Malibu apparently stopped prior to the crash a constraint was added that required the stopping 

distance for the Blazer to be greater than its initial distance (x2). The pre-crash speeds from the EDRs were 

treated as normal random outcomes with standard deviations equal to 1.5 feet/second, chosen so that 

±2 standard deviation range roughly covered the ranges reported in Bortles et al., 2016.  The impact speed 
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for the Blazer was treated as a normal random outcome with a standard deviation of 9.1 feet/second, 

consistent with the results of the planar impact reconstruction.  Prior uncertainty for the final time lag 

(Δ0) for the Malibu was treated as a uniform random variable bounded by 0 and 1 seconds.  A summary 

of the resulting posterior distributions is shown in Table 4.4. 

Comparing Table 4.4 with Table 4.3 shows that the Bayes estimates are generally consistent with the 

interval estimates shown in Table 3 although the uncertainty ranges in Table 4.4 tend to be wider than 

those in Table 4.3. This is to be expected since the Bayes estimates in Table 4.4 account for additional 

sources of uncertainty. The 2.5 percentile point for the reaction time of the Blazer’s driver was -0.05 

seconds, indicating that the Blazer’s driver might have begun decelerating in anticipation of the Malibu’s 

turn. 

Table 4.4 Summary of the posterior distribution for elements characterizing NASS/CDS Case 2012-12-044. 

Element 

Posterior Summary 

Mean Standard Deviation 2.5 %-ile 97.5 %-ile 

(t1) Turning Vehicle Time to 

Collision (seconds) 
3.0 0.4 2.2 3.8 

(v2) Opposing Vehicle Initial 

Speed (feet/second) 
64.7 1.5 61.5 67.6 

(x2) Opposing Vehicle Initial 

Distance (feet)  
170.6 27.8 118.2 224.1 

(x2/v2) Apparent Gap (seconds) 2.6 0.45 1.8 3.6 

(r2) Opposing Driver Reaction 

Time (seconds) 
1.1 0.6 -0.05 2.3 

(a2) Opposing Driver 

Deceleration (feet/second2) 
-14.5 2.0 -18.4 -10.5 
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4.2.2 Evaluation Using Crash Tests  

As indicated in Figure 4.2, a key feature of this estimation method is reconstruction of the pre-crash 

distance and speed trajectories for the opposing vehicle.  As a partial check on the method’s accuracy it 

was applied to a staged collision between a 2008 Chevrolet Malibu and a 2005 Mazda 3, conducted at 

the 2015 ARC-CSI Conference (ARC-CSI 2015). The Mazda was stationary while the Malibu was driven by 

a test driver who began braking shortly before striking the Mazda broadside. Test instrumentation gave 

estimated impacts speeds for the Malibu between 23.7 mph and 26.6 mph. This instrumentation 

included a Vbox video GPS system which provided speed and time prior to and during the crash, at 30 

frames/second. Using the Bosch CDR tool it was possible to download pre-crash data from the Malibu’s 

EDR, shown in Table 4.5, as well as longitudinal and lateral crash pulses. The Malibu’s longitudinal delta-

V was -11.5 mph and its lateral delta-V was 0 mph. 

Table 4.5 Pre-Crash data from Crash Test 4 at 2015 ARC-CSI conference 

Time (seconds) 

Vehicle 1 (Malibu) 

Speed (mph) Engine RPM Percent Throttle Brake Switch 

-5 32 3072 53 OFF 

-4 34 3136 43 OFF 

-3 35 2176 35 OFF 

-2 35 1920 24 OFF 

-1 35 1792 17 ON 
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Figure 4.3 Speed versus Time for the Malibu in Crash Test 4 at the 2015 ARC-CSI conference. 

A planar impact reconstruction using the delta-Vs from the EDR gave an estimated impact speed for the 

Malibu of 35 feet/sec (23.9 mph), with a posterior standard deviation of 6.5 feet/sec. This compared 

favorably with the impact speed from the Vbox, 36.1 feet/sec (24.6 mph). The Vbox speeds were then 

used to construct speed and distance trajectories for the Malibu, which were compared to trajectories 

reconstructed from the EDR pre-crash data using the methods described in the preceding section. For this 

case the Malibu’s braking was too late to estimate its final deceleration using EDR pre-crash speeds and 

so this was taken to be uniformly distributed with bounds of 0.3g and 0.7g. Figure 4.3 shows the speed 

profile as generated from the Vbox data; the fluctuations occurring after Time=-2 seconds were caused 

by the Malibu being driven up and over a ramp prior to the collision. Also shown are the speeds as 

estimated from the EDR pre-crash data and the impact speed as estimated from the planar impact 

reconstruction, together with their 95 percent confidence intervals. The posterior mean time lag between 

the final EDR sample point and the impact was 0.79 seconds, with a standard deviation of 0.26 seconds, 

and the EDR estimates are plotted using this posterior mean.  Figure 4.4 shows similar results for the 

Malibu’s distance from the impact point. 
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Figure 4.4 Distance versus Time for the Malibu in Crash Test 4 at the 2015 ARC-CSI conference 

4.3 ADDITIONAL NASS/CDS CASES 

4.3.1 Case 2013-75-034 

Figure C. 2, in the Appendix, shows a post-crash scene diagram for NASS/CDS case 2013-74-034 in which 

a 2004 Chevrolet Lumina turned left in front of a 2002 Chevrolet Blazer. In what follows the Lumina will 

be called Vehicle 1 and the Blazer Vehicle 2. Table 4.6 shows the EDR pre-crash data for both vehicles. 

Interestingly, the pre-crash data for the Blazer indicate that at Time= -1 both the brake and the throttle 

were being applied. 

Planar impact reconstruction yielded estimated impact speeds of 22.7 feet/second, or 15.5 mph, 

(standard deviation 3.2 feet/second) for the Lumina and 35.7 feet/second, or 24.3 mph, (standard 

deviation 7.6 feet/second) for the Blazer. These were then used as input for Bayesian trajectory 

reconstructions for both vehicles, with accelerations between Time = -1 and Time = 0 being 

extrapolations from the pre-crash data. For this case, since the turning vehicle did not stop, a constraint 

was imposed requiring that the arrival time of the opposing vehicle be within 0.25 seconds of the 

turning vehicle’s arrival time. Bayes estimates of the crash elements are shown in Table 4.7 
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Table 4.6 EDR pre-crash data for NASS/CDS Case 2013-74-034 

Vehicle 1 (Lumina) 

Time Speed (mph) Engine RPM 
Percent 

Throttle 
Brake Switch 

-5 1 640 0 OFF 

-4 4 1280 10 OFF 

-3 7 1472 10 OFF 

-2 11 1728 16 OFF 

-1 15 2112 16 OFF 

Vehicle 2 (Blazer) 

Time Speed (mph) Engine RPM 
Percent 

Throttle 
Brake Switch 

-5 52 1920 31 OFF 

-4 51 1600 31 OFF 

-3 51 1536 31 OFF 

-2 48 1408 0 ON 

-1 29 1024 27 ON 
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Table 4.7 Summary of the posterior distribution for elements characterizing NASS/CDS Case 2013-74-034 

Element 

Posterior Summary 

Mean Standard Deviation 2.5 %-ile 97.5 %-ile 

(t1) Turning Vehicle Time to 

Collision (seconds) 
2.8 0.5 2.1 3.8 

(v2) Opposing Vehicle Initial 

Speed (feet/second) 
74.9 1.3 72.3 77.4 

(x2) Opposing Vehicle Initial 

Distance (feet)  
181.3 36.1 123.1 259.5 

(x2/v2) Apparent Gap 

(seconds) 
2.4 0.47 1.7 3.4 

(r2) Opposing Driver 

Reaction Time (seconds) 
1.4 0.5 0.5 2.4 

(a2) Opposing Driver 

Deceleration (feet/second2) 
-27.6  2.0 -31.6 -23.5 

4.3.2 Case 2013-75-034 

Figure C. 3, in Appendix C, shows a post-crash scene diagram for NASS/CDS case 2013-12-111 in which a 

2013 Chevrolet Captiva turned left in front of a 2005 Chevrolet Impala. Table 4.8 shows EDR pre-crash 

data for both vehicles. while Table 4.9 shows Bayes estimates of the crash elements. 
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Table 4.8 Pre-Crash EDR data from NASS/CDS Case 2013-12-111 

Vehicle 1 (Captiva) 

Time (seconds) Speed (mph) Engine RPM Percent Throttle Brake Switch 

-5 16 1152 7 ON 

-4.5 14 1024 8 ON 

-4 12 960 9 ON 

-3.5 11 960 8 ON 

-3 10 896 9 ON 

-2.5 9 1152 28 OFF 

-2 9 1920 36 OFF 

-1.5 11 1984 37 OFF 

-1 12 2240 55 OFF 

-.5 15 2688 70 OFF 

Vehicle 2 (Impala) 

Time (seconds) Speed (mph) Engine RPM Percent Throttle Brake Switch 

-5 32 1600 5 OFF 

-4 32 1536 5 OFF 

-3 33 1472 5 OFF 

-2 34 1344 5 OFF 

-1 33 1344 0 ON 
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Table 4.9 Summary of the posterior distribution for elements characterizing NASS/CDS Case 2013-12-111 

Feature 

Posterior Summary 

Mean Standard Deviation 2.5 %-ile 97.5 %-ile 

(t1) Turning Vehicle Time 

to Collision (seconds) 
2.5 0.2 2.1 2.9 

(v2) Opposing Vehicle 

Initial Speed (feet/second) 
49.1 1.2 46.7 51.5 

(x2) Opposing Vehicle 

Initial Distance (feet)  
114.7 10.8 94.3 135.6 

(x2/v2) Apparent Gap 

(seconds) 
2.3 0.24 1.9 2.8 

(r2) Opposing Driver 

Reaction Time (seconds) 
1.6 0.35 0.9 2.3 

(a2) Opposing Driver 

Deceleration 

(feet/second2) 

-21.9  3.7 -28.6 -16.3 

4.3.3 Case 2013-49-059 

Figure C. 4, in the Appendix, shows the after-crash scene diagram for NASS/CDS Case 2013-49-059 in 

which 2003 Chevrolet S-10 pickup turned left and collided with a 2010 Ford Taurus. Table 4.10 shows 

pre-crash data for both vehicles. 
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Table 4.10 Pre-Crash EDR data from NASS/CDS Case 2013-49-059 

Vehicle 1 (S-10) 

Time (seconds) Speed (mph) Engine RPM Percent Throttle Brake Switch 

-5 0 896 0 ON 

-4 2 1856 100 OFF 

-3 10 2624 100 OFF 

-2 17 3136 100 OFF 

-1 22 3968 100 ON 

Vehicle 2 (Taurus) 

Time (seconds) Speed (mph) Engine RPM Accelerator Pedal (%) Brake Switch 

-5.0 36.0 1200 13 OFF 

-4.5 36.0 1200 13 OFF 

-4.0 36.7 1200 13 OFF 

-3.5 36.7 1200 12 OFF 

-3.0 37.3 1300 12 OFF 

-2.5 37.3 1300 12 OFF 

-2.0 37.3 1500 21 OFF 

-1.5 37.9 1400 20 OFF 

-1.0 38.5 1300 14 OFF 

-0.5 39.1 1300 13 OFF 

0.0 37.9 1300 0 ON 
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Planar impact reconstruction yielded estimated impact speeds of 18.9 feet/second, 12.9 mph (standard 

deviation 5.3 feet/second) for the S-10 and 60.6 feet/second, 41.3 mph (standard deviation 16.2 

feet/second) for the Taurus. These were used as input into Bayesian trajectory reconstructions for both 

vehicles, with the final deceleration for Taurus taken as uniformly distributed between 0.5g and 0.9g. The 

EDR pre-crash speed data from the Taurus was assumed to follow a bias and measurement error model 

derived from statistics reported by Ruth and Daily (2011). A constraint was imposed requiring that the 

arrival time of the opposing vehicle be within 0.25 seconds of the turning vehicle’s arrival time. Bayes 

estimates of the crash elements are shown in Table 4.11. 

Table 4.11 Summary of the posterior distribution for elements characterizing NASS/CDS Case 2013-49-059 

Element 

Posterior Summary 

Mean Standard Deviation 2.5 %-ile 97.5 %-ile 

(t1) Turning Vehicle Time to 
Collision (seconds) 

4.0 0.4 3.2 4.7 

(v2) Opposing Vehicle 
Initial Speed (feet/second) 

54.0 1.0 51.9 56.0 

(x2) Opposing Vehicle 
Initial Distance (feet)  

218.6 21.7 177.2 260.0 

(x2/v2) Apparent Gap 
(seconds) 

4.0 0.43 3.2 4.9 

(r2) Opposing Driver 
Reaction Time (seconds) 

3.5 0.45 2.6 4.4 

(a2) Opposing Driver 
Deceleration 
(feet/second2) 

-25.7  1.9 -28.8 -22.7 

4.3.4 Case 2013-12-126 

Figure C. 5, in the Appendix, show the after-crash scene diagram for NASS/CDS Case 2013-12-126 in 

which 2002 Impala turned left and collided with a 2012 Ford Fusion. Table 4.12 shows EDR pre-crash 

data for both vehicles.  
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Table 4.12 Pre-Crash EDR data from NASS/CDS Case 2013-12-126 

Vehicle 1 (Impala) 

Time (seconds) Speed (mph) Engine RPM Percent Throttle Brake Switch 

-5 28 960 1 ON 

-4 24 960 1 ON 

-3 22 960 1 ON 

-2 19 2112 50 OFF 

-1 17 2176 26 ON 

Vehicle 2 (Fusion) 

Time (seconds) Speed (mph) Engine RPM Accelerator Pedal (%) Brake Switch 

-5.0 46.6 1400 15 OFF 

-4.5 46.6 1500 37 OFF 

-4.0 47.2 2400 91 OFF 

-3.5 47.8 4200 96 OFF 

-3.0 49.7 4400 85 OFF 

-2.5 52.2 4500 85 OFF 

-2.0 52.8 4400 0 OFF 

-1.5 49.7 4500 0 ON 

-1.0 43.5 3400 0 ON 

-0.5 37.9 2200 0 ON 

0.0 26.7 1500 0 ON 
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Planar impact reconstruction yielded estimated impact speeds of 20.2 feet/second, 13.8 mph (standard 

deviation 8.1 feet/second) for the Impala and 44.9 feet/second, 30.6 mph (standard deviation 15.0 

feet/second) for the Fusion. For this case the final deceleration for the Fusion was extrapolated from the 

preceding deceleration rates and the impact speed was then computed by extrapolating the last EDR 

speeds and deceleration rates, assuming the final time to collision was uniformly distributed between 0 

on 0.5 seconds. As with the preceding case, bias and measurement error for the Fusion’s pre-crash speed 

data was modeled using statistics reported by Ruth and Daily (2011). A constraint was imposed requiring 

that the arrival time of the opposing vehicle be within 0.25 seconds of the turning vehicle’s arrival time, 

and Bayes estimates of the crash elements are shown in Table 4.13.. 

Table 4.13 Summary of the posterior distribution for elements characterizing NASS/CDS Case 2013-12-126 

Element 

Posterior Summary 

Mean 
Standard 

Deviation 
2.5 %-ile 97.5 %-ile 

(t1) Turning Vehicle Time 

to Collision (seconds) 
2.2 0.30 1.6 2.7 

(v2) Opposing Vehicle 

Initial Speed (feet/second) 
77.8 1.0 75.2 79.1 

(x2) Opposing Vehicle 

Initial Distance (feet)  
136.7 21.5 95.8 178.6 

(x2/v2) Apparent Gap 

(seconds) 
1.8 0.27 1.3 2.3 

(r2) Opposing Driver 

Reaction Time (seconds) 
0.44 0.29 -0.10 1.00 

(a2) Opposing Driver 

Deceleration 

(feet/second2) 

-26.7  2.4 -31.0 -21.7 
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4.3.5 Case 2013-04-123 

Figure C. 6, in the Appendix, show the after-crash scene diagram for NASS/CDS Case 2013-04-123 in which 

2013 Dodge Charger turned left and collided with a 2005 Chevrolet Silverado. Table 4.14 shows pre-crash 

data for both vehicles. EDR pre-crash data for the Charger was provided for five seconds at 10 Hz, for a 

total of 50 data points, and only a subset of these are shown in Table 4.14. 

Planar impact reconstruction yielded estimated impact speeds of 12.4 feet/second, 8.5 mph (standard 

deviation 6.0 feet/second) for the Charger and 20.6 feet/second, 14.0 mph (standard deviation 5.4 

feet/second) for the Silverado. These were used as input into Bayesian trajectory reconstructions for both 

vehicles, with the final deceleration for Silverado taken as uniformly distributed between 0.5g and 0.9g. 

Measurement error and bias in the Charger’s pre-crash speeds were modeled using statistics presented 

in Ruth and Reust (2009). A constraint was imposed requiring that the arrival time of the opposing vehicle 

be within 0.25 seconds of the turning vehicle’s arrival time. Bayes estimates of the crash elements are 

shown in Table 4.15 

Table 4.14 Pre-Crash EDR data from NASS/CDS Case 2013-04-123 

Vehicle 1 (Charger) 

Time (seconds) Speed (mph) Engine RPM Accelerator Pedal % Brake Switch 

-5.0 0 581 0 ON 

-4.5 0 588 3 ON 

-4.0 1 536 31 OFF 

-3.5 2 1545 14 OFF 

-3.0 5 1204 17 OFF 

-2.5 7 1921 16 OFF 

-2.0 11 1777 9 OFF 

-1.5 12 1788 0 ON 

-1.0 12 1679 0 ON 

-0.5 11 1606 0 OFF 

-0.1 4 754 0 OFF 
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Vehicle 2 (Silverado) 

Time (seconds) Speed (mph) Engine RPM Throttle (%) Brake Switch 

-5 34 1728 17 OFF 

-4 35 2048 23 OFF 

-3 38 2496 43 OFF 

-2 40 2624 52 OFF 

-1 30 1088 0 ON 

Table 4.15 Summary of the posterior distribution for elements characterizing NASS/CDS Case 2013-04-123 

Element 

Posterior Summary 

Mean Standard Deviation 2.5 %-ile 97.5 %-ile 

(t1) Turning Vehicle Time to 

Collision (seconds) 
3.9 0.15 3.6 4.1 

(v2) Opposing Vehicle 

Initial Speed (feet/second) 
52.4 1.2 50.2 54.7 

(x2) Opposing Vehicle 

Initial Distance (feet)  
189.9 8.6 175.3 206.5 

(x2/v2) Apparent Gap 

(seconds) 
3.6 0.19 3.3 4.0 

(r2) Opposing Driver 

Reaction Time (seconds) 
2.7 0.26 2.2 4.3 

(a2) Opposing Driver 

Deceleration 

(feet/second2) 

-21.4  3.6 -28.4 -16.3 
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4.4 CONCLUSION 

What do drivers do when involved in crashes? Historically, quantitative answers to this question have 

been difficult to come by but for at least 15 years it has been hoped that pre-crash data from event data 

recorders might support development of an “objective driver behavior database” (Chidester et al., 1999). 

This chapter described a method for using EDR pre-crash data from two vehicles to estimate features of 

left-turn opposing path collisions. Efforts were made to quantify the uncertainties resulting from 

measurement errors, coarseness of sampling intervals, and uncertainty regarding the relation between 

the pre-crash data and the time of impact. Experience with the method in reconstructing six crashes from 

the NASS/CDS database suggested the following lessons: 

1) Estimation is feasible but significant uncertainties remain. Precise characterization of individual 

events continues to be difficult but statistical analyses of suitably large samples should now be 

feasible. 

2) Each crash showed unique features, and informed judgment was needed in applying the method 

to individual cases. 

3) Comparing case 2013-12-111, where one vehicle had pre-crash data collected at a 0.5 second 

sampling rate, to the preceding two cases suggests that some uncertainty reduction should result 

from shorter sampling intervals. As vehicles compliant with 49CFR563 become more prevalent 

the results reported here should represent upper bounds on the uncertainty intervals associated 

with estimates rather than typical outcomes. 
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CHAPTER 5: LEFT-TURN CRASH SIMULATION MODEL 

The design and operation of highway components is generally governed by twin objectives of efficiency 

and safety. In many situations, however, these objectives are in conflict. Rational balancing of efficiency 

and safety to produce a design or operational plan for a given location requires causal prediction of the 

effects of different alternatives. The Highway Capacity Manual (HCM), and more recently, micro-

simulation programs, can be used to evaluate the operational efficiency of proposed alternatives; more 

recently, the Highway Safety Manual (HSM) offers engineers tools for predicting safety-related impacts. 

The HSM methodology essentially uses regression-type statistical models to predict crash frequency at a 

location under clearly defined base conditions and then uses empirically-developed crash modification 

factors (CMFs) to predict the effects of altering the base conditions. Although a substantial advance in the 

state of art, certain limitations of the HSM method have been identified, particularly that the CMFs 

describe at best average causal effects that ignore the possibility that the causal effect of safety-related 

treatment can vary across different locations as local conditions vary (Hauer, 2004; 2006).   

If we possessed a complete theory of traffic crash causation, analytic or simulation models could be used 

to give the needed predictive power, much as simulation modeling is now used for operational decision 

support. In many areas of engineering, however, there may exist structural knowledge concerning some, 

but not all, relevant aspects of a phenomenon. In such cases, a mechanistic/empirical approach, which 

supplements the limited structural knowledge with empirically-developed relationships, can be used to 

produce useable design tools. The term “mechanistic/empirical” is borrowed from pavement design, 

where mechanical models are used to predict the stresses and strains in pavement layers caused by tire 

loadings, while empirical models are used to predict pavement damage from a history of stresses and 

strains 

Protected-only left-turn phasing reduces left-turn crashes by eliminating conflicts between left-turning 

drivers and opposing drivers. Because it restricts left-turns to a limited portion of the signal cycle, when 

adequate gaps exist in the opposing traffic stream protected-only left-turn phasing can also increase the 

delay experienced by left-turning drivers (Hauer, 2004). This makes the safety versus efficiency trade-off 

especially salient, and unfortunately there does not appear to be a generally accepted estimate of the 

crash-reduction effect of shifting from permitted to protected phasing. FHWA’s Desktop Reference (Bahar 

et al., 2007) gives estimates of crash reductions ranging from 16% to 70%, while the HSM recommends 

99%. This last estimate appears to be based on findings at a single intersection described in Davis and Aul 

(2007), where a change from permitted to protected phasing produced no left-turn crashes during a 3-

year after period. At this intersection, the positioning of the left-turn lanes was such that views of 

opposing traffic were blocked when vehicles were waiting in the opposing left-turn lane (McCoy et al 

2001), while highlights the site-specific nature of crash reduction effects. 

Left-turn cross-path crashes occur when a driver attempts to turn left in front of a vehicle approaching 

from the opposite direction and is unable to complete the turn before colliding with the opposing vehicle.   
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For this project, a microscopic simulation model of left-turning conflicts and crashes, originally described 

in Davis and Aul (2007), was extended and enhanced based on the findings described in Chapter 2. The 

simulation model consists of three main components: (1) a traffic generation model employing Cowan’s 

M3 distribution (Cowan, 1975), (2) gap-acceptance and turning-time models based on the empirical 

results described in Chapter 2, and (3) a simple kinematic braking model for the opposing vehicle, which 

uses statistics for reaction times and braking rates reported by Koppa et al. (1996). Development of the 

gap-acceptance model was described in Chapter 2, using video-based data collected at the intersection of 

Robert and Mendota. The model using log gap (Model 6) is currently implemented in the simulation 

model, and a statistical summary of its parameter estimates is presented in Table 5.1. To see how the 

parameter estimates in Table 5.1 are used, the fitted logit model states that the probability a typical driver 

at this intersection accepts a four-second gap would be estimated as 

P [accept | gap=4 seconds] = exp(-8.3 + 4.8*log(4))/(1+exp(-8.3 + 4.8*log(4)) = 0.162 

Table 5.1 Estimation summary of gap acceptance model parameters 

Parameter Estimate Std. Error Z-statistic Significance 

β0 -8.3 0.6 -13.0 P < .0001 

β1 4.8 0.4 12.2 P < .0001 

Figure 5.1 shows a plot of the probability of accepting a gap as a function of gap duration. 

 

Figure 5.1 Acceptance probability as a function of gap. 
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Cowen’s M3 distribution is a model of vehicle headways that assumes two types of traffic: platooned 

vehicles traveling with a constant headway ∆, and free-moving traffic with headways following a shifted 

exponential distribution. The cumulative distribution function for the headways is given by 
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Where α is the proportion of freely moving vehicles in the traffic stream. The parameter λ is related to 

the traffic flow q via 




1

q
                               (5.2) 

The field study described in Chapter 2 produced 749 observed headways, and Figure 5.2 is a histogram 

showing the frequencies of the observed headways. 

 

Figure 5.2 Headway (gap) distribution from field study. 

Figure 5.2 suggests that the headway distribution is approximately exponential for headways greater 

than 2.0 seconds.  Cowan’s M3 distribution was then fit to these data using the method of moments and 

assuming a minimum free gap of 2.0 seconds (Sullivan and Troutbeck, 1994; Troutbeck, 1997). This gave 

an estimated proportion of “free” vehicles α=0.612 and an estimated decay parameter λ=0.359.  Figure 

5.3 compares the observed and fitted distributions for headways greater than 2.0 seconds. 



70 

 

 

Figure 5.3 Gap distribution from field study compared to Cowan M3 model, for gaps>2.0 seconds. 

The LT collision model is an adaptation of one described in Davis and Aul (2007). Basically, the model 

takes as input a mean and standard deviation for the distribution of opposing vehicle speeds, a value for 

the opposing traffic flow, and means and standard deviations describing distributions for the reaction 

times and braking rates for opposing drivers. In addition, the logit model parameters for the gap-

acceptance model, and the linear regression model relating clearance times to accepted gaps are input. 

The model then proceeds as follows: 

1) A random speed for the oncoming vehicle is drawn from a normal distribution. 

2) A random gap for the oncoming vehicle is drawn from a Cowan M3 distribution. 

3) The probability of acceptance is computed using the above logit model, and the corresponding 

distance is computed from the gap and speed. 

4) A random gap acceptance decision is then drawn from a Bernoulli distribution with the above 

acceptance probability. 

5) Random values are drawn for the oncoming driver’s reaction time, braking deceleration, and the 

left-turn clearance time. 

6) Crash/no crash is determined by comparing vehicle arrival times at the conflict point. 
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Figure 5.4 Left-turn crash simulation model as directed acyclic graph. 

Figure 5.4 shows the dependency structure of the model as a directed acyclic graph (DAG), where 

q = opposing traffic flow (vehicles/second) 

h = traffic stream gap (seconds) 

tc = left-turning vehicle’s turning time (seconds) 

v = opposing vehicle speed (feet/second) 

x = opposing vehicle’s distance at start of turn (feet) 

accept = 0, gap rejected 

   1, gap accepted 

tp = opposing driver’s reaction time (seconds) 

f = opposing driver’s braking rate (g-units) 

y = 0, no crash 

      1, crash. 

The model was implemented using the simulation freeware WinBUGS (Lunn et al., 2013) and example 

model code is given in the Appendix. 

5.1 SIMULATION EXPERIMENTS 

The first version of the simulation model was designed to represent the Chapter 2 field study site at 

Robert and Mendota. The opposing vehicles’ speeds were assumed to have a mean and standard 

deviation equal to those observed at the field site and gap acceptance and LT turning times were 

assumed to follow the models described in Chapter 2. Since the opposing approach had two through 
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lanes, the two-lane version of the Cowan headway model described by Sullivan and Troutbeck (1997) 

was used to generate the gaps in the opposing vehicle stream. Finally, the opposing drivers’ reaction 

times and braking rates were generated from lognormal distributions with means and standard 

deviations taken from estimates reported by Koppa et al. (1996) for alerted drivers. 

5.1.1 Simulating Gaps 

The first test of the simulation model was to see if it could adequately reproduce traffic features 

observed in our field study. A Monte Carlo simulation was run for 100,000 iterations. Table 5.2 shows 

descriptive statistics from the field study, while Table 5.3 shows similar statistics as simulated by the 

model. 

Table 5.2 Descriptive statistics for opposing vehicle characteristics from field study, all vehicles 

  Mean Std. Deviation 25% 50% 75% 

Gap (second) 3.7 2.6 1.9 2.9 4.7 

Speed (mph) 35.6 9.0 28.4 35.4 42.3 

Distance (feet) 188.2 136.8 99.0 148.6 234.7 

Clearance Time (second) 3.0 1.0 2.4 2.8 3.5 

Table 5.3 Results from first simulation run: all gaps considered 

Variable Mean Std. Deviation 2.5 %-ile 25 %-ile 75 %-ile 97.5 %-ile 

Speed (mph) 35.6 9.0 17.9 29.5 41.7 53.3 

Distance (ft) 193.7 146.2 61.0 104.5 233.7 603.1 

Gap (second) 3.7 2.6 0.8 2.0 4.5 10.9 

Comparing Table 5.3 with the corresponding rows of Table 5.2, we see that the simulated speeds and 

gaps match the observed data very well, as would be expected since the simulation was constructed so 

as to replicate these distributions. However, the derived variable, distance, also matches reasonably 

well and we concluded that the simulation model provides a reasonable representation of gap 

generation. 
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5.1.2 Simulating Crash Rates  

Our second simulation exercise sought to look at the population of accepted gaps, in part to compare 

with data from the field study but mainly to see if our model generated reasonable collision rates. Since 

the denominator in an estimated conflict or collision rate is usually the number of left-turning vehicles, 

these rates need to be computed as fractions of accepted, rather than all, gaps. To implement this, we 

took advantage of WinBUGS ability to simulate conditional as well as unconditional distributions by 

setting the model’s variable ‘accept.sim’ to the value 1; that is, a gap was accepted. Because we 

expected collisions to be relatively rare, this time the Monte Carlo simulator was run for 500,000 

iterations. Table 5.5 summarizes the results from this run. Comparing Table 5.4 to the corresponding 

rows of Table 5.5 shows that the simulation model realistically replicated the accepted gaps. 

Table 5.4 Descriptive statistics from field study for opposing vehicle characteristics in accepted gaps 

  Mean Std. Deviation 25 %-ile 50 %-ile 75 %-ile 

Gap (second) 7.2 2.7 5.2 6.7 8.7 

Speed (mph) 34.3 7.9 27.8 33.9 40.2 

Distance (feet) 360.0 161.4 250.3 316.2 430.9 

Table 5.5 Results of second simulation run: accepted gaps only 

Variable Mean Std. Deviation 2.5 %-ile 25 %-ile 75 %-ile 97.5 %-ile 

Speed (mph) 35.6 9.0 18.0 29.5 41.7 53.2 

Distance (ft) 391.4 197.6 132.2 253.9 482.4 889.7 

Gap (second) 7.5 3.2 3.2 5.3 9.0 15.5 

Clearance Time (second) 3.0 1.0 1.6 2.4 3.6 5.3 

Reaction Time (second) 0.6 0.3 0.2 0.4 0.7 1.4 

Braking (g units) 0.75 0.1 0.57 0.68 0.81 0.96 

The simulation model treats the LT and opposing vehicles as point masses, which can collide only if they 

arrive at the conflict point at exactly the same instant, but since vehicles occupy space, collisions can 

occur for a range of non-instantaneous arrivals. One of the model’s parameters was the appropriate 

value for this range, and this was to be determined so that the simulation model tended to produce LT 

crash rates similar to those reported in the literature. Since turning movement volumes tend to be hard 
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to come by, most safety-related research uses average annual daily traffic on the major and minor 

approaches as predictors of intersection crash frequency, but a literature search turned up three studies 

that gave estimates of LT crash rates. Upchurch (1991) reported rates ranging from 0.55 to 4.54 crashes 

per million left-turning vehicles, while Maze et al. (1994) reported left-turn crash rates ranging from 

approximately 0 to 7 crashes per million left-turning vehicles. More recently, Shahdah et al. (2014) 

presented data on left-turn crashes from intersections in Toronto and the information in its Tables 6 and 

7 can be used to compute a crash rate of approximately 2.3 left-turn crashes per million left-turning 

vehicles.  After some experimentation, it was found that requiring gaps shorter than 2.5 seconds to be 

rejected and using a crash time window of 0.5 seconds appeared to give reasonable results. A simulation 

of 5 million accepted gaps was run, producing 38 simulated crashes. The estimated crash rate would 

then be 7.6 crashes/million LTs with an approximate 95% confidence interval of (5.1, 10.1). Since the 

simulation was run to replicate peak-period (3 PM – 6 PM) conditions the model appeared to give 

reasonable LT crash rates. 

5.1.3 Simulating Variation in Crash Risk 

The next check on the simulation model was to compare it to a relative risk regression model described 

in Davis et al., 2016. This regression model was developed to predict how risk of a LT crash varies as LT 

and opposing traffic volumes vary throughout a typical day. For intersections similar to the one used in 

the field study (Robert and Mendota in Inver Grove Heights), the fitted regression model took the form 
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Here LTtarget and OPtarget denote hourly left-turn and opposing flows during target conditions, while LTbase 

and OPbase denote corresponding flows during a base condition. RR then gives the proportional change in 
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That is, a left-turn crash is 76% more likely during the target condition than during the base condition. 
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which describes how LT crash risk changes as opposing traffic flow changes. That is, since 2.37=1.29, a 

doubling of opposing traffic flow is associated with a 29% increase in LT crash risk. Using the simulation 

model 10,000,000 accepted LT gaps were simulated for opposing flows 200, 400, 600, 800, and 1000 

vehicles/hour, and the numbers of simulated left crashes were recorded. Figure 5.5 compares simulated 

risk ratios to those computed using the empirical relationship (5.4), when there is no change in LT flow 

and the base opposing flow is 200 vehicles/hour. Also shown in Figure 5.5 are approximate ±1 standard 

error intervals to the simulation-based estimates.   

 

Figure 5.5 Comparison of Empirical and Simulated Estimates of Left-Turn Crash Risk Ratio. 

Figure 5.5 shows that, for low opposing demand flows, the empirical and simulation risk ratios are 

comparable but that these diverge for higher demand flows. In the simulation model, the fraction of 

short gaps increases as opposing flow increases, and thus other things being equal, the likelihood of LT 

crash is a convex function of opposing flow. For the empirical model, however, the estimated coefficient 

of 0.37 means that the relationship between crash risk and opposing flow is concave. That is, according 

to the empirical model, doubling the opposing flow produces only a 29% increase in crash risk. Concave 

relationships between traffic volume and crash experience are very common in empirical safety models, 

and to date, there is no satisfactory explanation for this effect. (One possibility of course is that drivers 

tend to be more alert in higher traffic situations and so less likely to make errors.) In any case, an 

inability to replicate this effect is a weakness of the simulation model and absent a convincing 

theoretical explanation for this effect, only ad hoc adjustments are possible. 
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5.1.4 Simulating Crash Modification Factors  

Crash modification factors (CMF) are used in the Highway Safety Manual to describe how expected 

crash frequencies change as roadway conditions change. They are most commonly estimated using 

before-after and cross-sectional data from numerous road locations, but Davis (2014) has recently 

described how, in certain situations, CMFs might also be estimated from detailed information about 

individual crashes. Of interest here is the nonparametric estimator given in equation (16) (Davis, 2014, 

p. 298). From Figure 5.4 it can be seen that the node h intercepts all paths connecting q to y. This means 

that the crash outcome y is conditionally independent of traffic flow (q), given the traffic stream gap (h) 

(Pearl, 2010).  Applying a continuous version of equation (16) in Davis (2014), the CMF associated with a 

change in traffic flow from q0 to q1 can be computed via 
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To apply equation (5.5) we need to know the distribution of gaps (h) under both flow conditions and the 

distribution of gaps in crashes that occur during flow condition q0. In principle, these can be simulated 

with sample sizes much smaller than those needed to estimate raw crash rates. As an initial 

investigation of this possibility, we selected a scenario consisting of a one-lane opposing approach, 

where traffic gaps follow a Cowan M3 distribution with a minimum gap of ∆=2.0 seconds, and where the 

proportion of free vehicles is related to traffic flow via Tanner’s (1962) linear relation 

α = 1-∆q         (5.6) 

This gives a relationship such that when traffic flow is 1800 vehicles/hour/lane (q=0.5 vehicles/second) 

all vehicles are platooned, with no freely moving vehicles. All other features of this simulation were the 

same as used earlier. 

Table 5.6 Mean elements of simulated crashes at two levels of opposing traffic flow 

Opposing 

Flow 

Speed 

(feet/second) 

Distance 

(feet) 

Turn time 

(second) 

Reaction time 

(second) 

Deceleration 

(g) 

Gap 

(second) 

200 64.8 (13.0) 183.8 (43.1) 3.61 (0.49) 2.03 (0.68) 0.70 (0.10) 
2.84 

(0.36) 

400 64.4 (13.0) 181.6 (41.4) 3.58 (0.46) 2.03 (0.66) 0.71 (0.10) 
2.83 

(0.33) 

600 64.6 (12.8) 180.2 (39.4) 3.55 (0.43) 1.99 (0.62) 0.70 (0.10) 
2.79 

(0.28) 
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800 64.9 (12.9) 180.6 (39.2) 3.55 (0.42) 1.96 (0.64) 0.70 (0.10) 
2.79 

(0.28) 

1000 64.2 (12.7) 179.6 (39.9) 3.57 (0.44) 1.99 (0.62) 0.70 (0.10) 
2.80 

(0.29) 

 

Table 5.7 Left-turn crash element estimated from six actual left-turn crashes 

NASS/CDS 

Case 

Speed 

(feet/second) 

Distance 

(feet) 

Turn time 

(second) 

Reaction time 

(second) 

Deceleration 

(g) 

Gap 

(second) 

2012-12-

044 
56.7 (1.5) 

170.6 

(27.8) 
3.0 (0.4) 1.1 (0.6) 0.45 (0.06) 2.6 (0.45) 

2013-74-

034 
74.9 (1.3) 

181.3 

(36.1) 
2.8 (0.5) 1.4 (0.5) 0.86 (0.06) 2.4 (.0.47) 

2012-12-

111 
49.1 (1.2) 

114.7 

(10.8) 
2.5 (0.2) 1.6 (0.35) 0.68 (0.11) 2.3 (0.24) 

2013-49-

059 
54.0 (1.0) 

218.6 

(21.7) 
4.0 (0.4) 3.5 (0.45) 0.80 (0.06) 4.0 (0.43) 

2013-12-

126 
77.8 (1.0) 

136.7 

(21.5) 
2.2 (0.3) 0.44 (0.29) 0.83 (0.08) 1.8 (0.27) 

2013-04-

123 
52.4 (1.2) 189.9 (8.6) 3.9 (0.15) 2.9 (0.26) 0.66 (0.11) 3.6 (0.19) 

Average 60.8 168.6 3.1 1.82 0.71 2.8 

Table 5. 7 summarizes the posterior means and standard deviation for the elements estimated from the 

six NASS/CDS crashes described in Chapter 4. The bottom row of Table 5. 7 presents averages the 

individual posterior means and comparing the bottom row of Table 5. 7 to the simulated means in Table 

5. 6 indicates that the simulated crashes are not dissimilar from the actual crashes investigated so far. 
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Figure 5.6 Probability density functions for gaps in simulated crashes. 

Figure 5.6 shows the kernel density estimates of the probability density functions (PDF) for simulated 

crash-involved gaps, with opposing traffic flows of 200, 400, 600, 800, and 1000 vehicles/hour. Each of 

the PDFs shown in Figure 5.6. is consistent with that of a shifted exponential distribution with a minimum 

value of 2.5 seconds, and the similarities among the means and standard deviations for these simulated 

gaps indicate that the same shifted exponential describes crash-involved gaps in each flow condition. If 

the population of crash-involved gaps follows a shifted exponential distribution while the original gap 

distributions follow Cowan M3 distributions with the fraction of free vehicles given by equation (5.6), then 

the integral in (5.5) can be evaluated in closed form to give 

 ))((exp
1

1
01

010

1

0

1 


































 c

c

c qq
qqq

q

q

q
CMF




                     (5.7) 

Here λc and ∆c denote, respectively, the rate and minimum value parameters for the shifted exponential 

describing the crash-involved gaps in the initial (q0) condition. 

Table 5.8 compares CMFs computed using equation (5.7), with crash-involved gaps assumed to follow 

and shifted exponential distribution with minimum values of 2.6 seconds and a mean of 2.8 seconds, 

with risk ratio estimates computed using the empirical relationship given in equation (5.4). As before, 

the base condition was taken to be an opposing flow of 200 vehicles/hour.  Overall, the simulation-

based CMFs computed using equation (5.7) are roughly similar to the empirical CMFs computed using 

equation (5.4).  
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Table 5.8 Comparison of risk ratio estimates computed using equations (5.4) and (5.7) 

Flow (vehicles/hour) Equation (5.4) Equation (5.7) 

200 1.0 1.0 

400 1.29 1.67 

600 1.50 2.06 

800 1.67 2.19 

1000 1.81 2.09 

5.2 CONCLUSION 

This chapter described a microscopic simulation model of left-turn crash occurrence where left-turns are 

permitted but not protected. The simulation model produced traffic flow and gap-acceptance behavior 

similar to that observed in Chapter 2’s field study and, after some calibration, left-turn crash rates 

similar to those reported in the literature. When comparing how left-turn crash risk varies with opposing 

traffic flow, there was a noticeable discrepancy between the simulated risk and the risk as predicted by 

an empirical model developed by Davis et al. (2016). On the other hand, the characteristics of simulated 

crashes were consistent with characteristics estimated for the six actual crashes described in Chapter 4, 

and application of a method for computing risk variation described in (Davis, 2014) produced better 

comparability with the empirical model. 

Overall, the simulation model appears promising but is not yet ready for application. The discrepancy 

between the simulated and empirical risk shown in Figure 5.4 needs to be explained, and it would be 

helpful to have a larger sample of reconstructed crashes for comparison. Especially interesting is the 

possibility of using variants of equation (5.5) to simulate crash-modification effects without having to 

generate the many millions of events needed to simulate raw crash rates. 
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APPENDIX A: WINBUGS CODE IMPLEMENTING BAYESIAN 

RECONSTRUCTION USING PLANAR IMPACT MECHANICS 

 



A-1 

model planar recon 

# reconstruction via Brach and Brach (2011) planar impact model 

# English units 

# ARC-CSI 2106 Test #1 

# actual data 

{ 

 

# constants 

 

g <- 32.2 

pi <- 3.141592 

d2r <- pi/180 

mph2fps <- 88/60 

 

# initial conditions 

 

# vehicle 1 

# theta1.lo <- (theta1.deg-anglebound)*d2r 

# theta1.hi <- (theta1.deg+anglebound)*d2r 

# theta1 ~ dunif(theta1.lo, theta1.hi) 

theta1 <- theta1.deg*d2r 

phi1 <- phi1.deg*d2r 

omega1 <- omega1.deg*d2r 

# phi1.lo <- (phi1.deg-anglebound)*d2r 

# phi1.hi <- (phi1.deg+anglebound)*d2r 

# phi1 ~ dunif(phi1.lo,phi1.hi) 

# d1.lo <- max(0,d1.in-dbound) 

# d1.hi <- d1.in+dbound 

# d1 ~ dunif(d1.lo,d1.hi) 

d1 <- d1.in 

 

# vehicle 2 

# theta2.lo <- (theta2.deg-anglebound)*d2r 

# theta2.hi <- (theta2.deg+anglebound)*d2r 

# theta2 ~ dunif(theta2.lo, theta2.hi) 

theta2 <- theta2.deg*d2r 

omega2 <- omega2.deg*d2r 

phi2 <- phi2.deg*d2r 

# phi2.lo <- (phi2.deg-anglebound)*d2r 

# phi2.hi <- (phi2.deg+anglebound)*d2r 

# phi2 ~ dunif(phi2.lo,phi2.hi) 

# d2.lo <- max(0,d2.in-dbound) 



A-2 

# d2.hi <- d2.in+dbound 

# d2 ~ dunif(d2.lo,d2.hi) 

d2 <- d2.in 

 

# collision 

 

# Gamma.lo <-(Gamma.deg-anglebound)*d2r 

# Gamma.hi <- (Gamma.deg+anglebound)*d2r 

# Gamma ~ dunif(Gamma.lo,Gamma.hi) 

Gamma <- Gamma.deg*d2r 

e <- 0.1 

# e ~ dunif(.2,.6) 

mupercent <- 100 

 

 

# core computations 

 

# v1 ~ dunif(41.5,42.5) 

# v2 ~ dunif(50,51) 

v1 ~ dunif(5,100) 

v2 ~ dunif(5,100) 

 

v1x <- v1*cos(theta1+pi) 

v1y <- v1*sin(theta1+pi) 

v2x <- v2*cos(theta2) 

v2y <- v2*sin(theta2) 

 

v1n <- v1x*cos(Gamma)+v1y*sin(Gamma) 

v1t <- -v1x*sin(Gamma)+v1y*cos(Gamma) 

v2n <- v2x*cos(Gamma)+v2y*sin(Gamma) 

v2t <- -v2x*sin(Gamma)+v2y*cos(Gamma) 

 

mbar <- (m1*m2)/(m1+m2) 

k21 <- I1/m1 

k22 <- I2/m2 

 

da <- d2*sin(theta2+phi2-Gamma) 

db <- d2*cos(theta2+phi2-Gamma) 

dc <- d1*sin(theta1+phi1-Gamma) 

dd <- d1*cos(theta1+phi1-Gamma) 

 

vrn <- (v2n-da*omega2)-(v1n+dc*omega1) 



A-3 

r <-( (v2t-db*omega2)-(v1t+dd*omega1))/((v2n-da*omega2)-(v1n+dc*omega1)) 

 

A <- 1 +((mbar*dc*dc)/(m1*k21))+((mbar*da*da)/(m2*k22)) 

B <- ((mbar*dc*dd)/(m1*k21))+((mbar*da*db)/(m2*k22)) 

C <- ((mbar*dd*dd)/(m1*k21))+((mbar*db*db)/(m2*k22)) 

 

mu0 <- (r*A+(1+e)*B)/((1+e)*(1+C)+r*B) 

mu <- mu0*mupercent/100 

# mu ~ dunif(0,mu0) 

 

q1 <- (mbar*da*da)/(m2*k22) 

q2 <- (mbar*dc*dc)/(m1*k21) 

q3 <- (mbar*dc*dd)/(m1*k21) 

q4 <- (mbar*da*db)/(m2*k22) 

q <- 1/(1+q1+q2-mu*(q3+q4)) 

 

V1n <- v1n+mbar*(1+e)*vrn*(q/m1) 

V1t <- v1t + mu*mbar*(1+e)*vrn*(q/m1) 

V2n <- v2n-mbar*(1+e)*vrn*(q/m2) 

V2t <- v2t -mu*mbar*(1+e)*vrn*(q/m2) 

 

Pn <- m1*(V1n-v1n) 

Pt <- m1*(V1t-v1t) 

 

Omega1 <- omega1 +mbar*(1+e)*vrn*(dc-mu*dd)*(q/(m1*k21)) 

Omega2 <- omega2 + mbar*(1+e)*vrn*(da-mu*db)*(q/(m2*k22)) 

 

V1x <- V1n*cos(Gamma)-V1t*sin(Gamma) 

V1y <- V1n*sin(Gamma)+V1t*cos(Gamma) 

V2x <- V2n*cos(Gamma)-V2t*sin(Gamma) 

V2y <- V2n*sin(Gamma)+V2t*cos(Gamma) 

 

V1 <- sqrt(V1x*V1x+V1y*V1y) 

V2 <- sqrt(V2x*V2x+V2y*V2y) 

 

de <- dc-mu*dd 

df <- da-mu*db 

 

TL <- (.5)*mbar*q*(vrn*vrn)*(1+e)*(2+2*mu*r-

(1+e)*q*(1+(mu*mu)+(mbar*de*de)/(m1*k21)+(mbar*df*df)/(m2*k22))) 

 

#predicted delta v's 
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deltav1.x <- V1x-v1x 

deltav1.y <- V1y-v1y 

deltav2.x <- V2x-v2x 

deltav2.y <- V2y-v2y 

 

deltav1.fr <- deltav1.x*cos(pi+theta1)+deltav1.y*sin(pi+theta1) 

deltav1.ss <- deltav1.x*sin(pi+theta1)-deltav1.y*cos(pi+theta1) 

deltav2.fr <- deltav2.x*cos(theta2)+deltav2.y*sin(theta2) 

deltav2.ss <- deltav2.x*sin(theta2)-deltav2.y*cos(theta2) 

 

tau1 <- 1/(sig1*sig1) 

 

# S[1,1] <- sig1*sig1 

# S[2,2] <- sig1*sig1 

# S[1,2] <- rho*sig1*sig1 

# S[2,1] <- rho*sig1*sig1 

# T[1:2,1:2] <- inverse(S[,]) 

deltav1.fr.dat ~ dnorm(deltav1.fr, tau1) 

deltav1.ss.dat ~ dnorm(deltav1.ss, tau1) 

# deltav1.dat[1] <- deltav1.fr.dat 

# deltav1.dat[2] <- deltav1.ss.dat 

# mu1[1] <- deltav1.fr 

# mu1[2] <- deltav1.ss 

# deltav1.dat[1:2] ~ dmnorm(mu1[],T[,]) 

 

deltav2.fr.dat ~ dnorm(deltav2.fr,tau1) 

deltav2.ss.dat ~ dnorm(deltav2.ss,tau1) 

# deltav2.dat[1] <- deltav2.fr.dat 

# deltav2.dat[2] <- deltav2.ss.dat 

# mu2[1] <- deltav2.fr 

# mu2[2] <- deltav2.ss 

# deltav2.dat[1:2] ~ dmnorm(mu2[],T[,]) 

 

# compute predicted doi 

 

doi <- atan2.function(Pn,Pt) 

 

pdof1.deg <- (theta1-Gamma-doi)/d2r 

pdof2.deg  <- (theta2-Gamma-doi)/d2r 

 

tau2 <- 1/(sig2*sig2) 



A-5 

pdof1.dat ~ dnorm(pdof1.deg,tau2) 

pdof2.dat ~ dnorm(pdof2.deg,tau2) 

 

 

# compute predicted exit angles 

# atan2 function 

 

Theta1 <- atan2.function(V1x,V1y) 

Theta2 <- atan2.function(V2x,V2y) 

 

Theta1.deg <- Theta1/d2r 

Theta2.deg <- Theta2/d2r 

 

tau3 <- 1/(sig3*sig3) 

Theta1.deg.dat ~ dnorm(Theta1.deg,tau3) 

Theta2.deg.dat ~ dnorm(Theta2.deg,tau3) 

 

# delta v's from crush 

deltav1 <- sqrt(deltav1.x*deltav1.x+deltav1.y*deltav1.y) 

deltav2 <- sqrt(deltav2.x*deltav2.x+deltav2.y*deltav2.y) 

 

deltav1.crush <-.8684*deltav1 

deltav2.crush <- .8684*deltav2 

 

tau4 <- 1/(sig4*sig4) 

deltav1.crush.dat ~ dnorm(deltav1.crush,tau4) 

deltav2.crush.dat ~ dnorm(deltav2.crush,tau4) 

 

v1.mph <- v1*(60/88) 

v2.mph <- v2*(60/88) 

 

 } 

 

Data list(m1=129.8,I1=2973, d1.in=5.8,phi1.deg=18,theta1.deg=0,omega1.deg=0, 

m2=106.8,I2=2155,d2.in=5.2,phi2.deg=6,theta2.deg=0,omega2.deg=0,Gamma.deg=20,sig1=3.2,sig2=10,

sig3=10,sig4=9) 

list(anglebound=10, dbound=2) 

list(deltav1.fr.dat=-44) 

list(deltav1.ss.dat=5.7, deltav2.fr.dat=-53,3, deltav2.ss.dat=6.9) 

list(pdof1.dat=-10,pdof2.dat=350) 

list(Theta1.deg.dat=73, Theta2.deg.dat=-126) 
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list(deltav1.crush.dat=36.8,deltav2.crush.dat=44.7) 

 

Inits list(v1=42,v2=50.5) 

 



 

APPENDIX B: DATA USED IN RECONSTRUCTING RICSAC 

COLLISIONS 

 

 

 

 

 

 

 

 

 

 



B-1 

RICSAC 

Crash 

Vehicle  m      I d φ θ Γ v e μ% Δv long Δv lat Δv 

crush 

Β PDOF 

1 1 143.5 3728 7.59 -19.8 0 -30 -29.0 0 100 -16.0 6.6 15 153 -22 

2 95.8 1961 3.44 -38.7 60  29.0   -17.3 -13.0 19 108 37 

6 1 133.6 3469 8.41 -17.9 0 -30 -31.5 0 100 -13.0 3.5 12 169 -15 

2 81.5 1669 2.00 -90.0 60  31.5   -15.5 -14.8 19 103 44 

7 1 115.0 2985 8.41 -17.9 0 -30 -42.7 0 100 -17.2 3.5 15.2 172 -12 

2 81.1 1082 2.00 -90.0 60  42.7   -17.6 -22.9 25.1 103 52 

8 1 139.1 3614 7.90 0.0 0 0 -30.5 0.79 100 -20.4 10.4 20 134 -27 

 2 146.3 3800 2.77 -68.8 90  30.5   -10.4 -11.7 14 120 48 

9 1 70.1 976 4.80 6.0 0 0 -31.1 .355 100 -26.3 11.4 25 113 -27 

 2 152.2 3953 5.60 -29.7 90  31.1   -7.3 -10.1 11 113 63 

10 1 71.6 998 3.47 0.0 0 0 -48.8 .419 100 -37.5 19.1 37 121 -27 

 2 146.6 3008 5.29 -29.2 90  48.8   -12.8 -14.4 17 112 48 

m – vehicle mass (lb-s2/ft) 

I – yaw moment of inertial (ft-lb-s2) 

d – distance from center of mass to contact center (feet) 

φ – angle to contact center (degrees) 

θ – initial heading angle (degrees) 

Γ – crush angle (degrees) 

v – initial speed (feet/second) 

e – restitution coefficient (dimensionless) 

μ% - impulse ratio (percent) 

Δv long – delta-V in longitudinal (front-rear) direction (feet/second) 

Δv long – delta-V in lateral (side-side) direction (feet/second) 

Δv crush – idealized delta-V estimated from crush measurements (feet/second) 

Β – idealized exit angle measurements (degrees) 

PDOF – idealized measurements of principal direction of force (degrees)] 

 



APPENDIX C: POST-CRASH SCENE DIAGRAMS FOR NASS/CDS 

CASES, PREPARED BY NASS/CDS INVESTIGATORS 
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Figure C. 1 Post-crash scene diagram for NASS/CDS Case 2012-12-044. Vehicle 1 (Malibu) is turning left. Vehicle 2 
(Blazer) is going straight. 
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Figure C. 2 Post-crash scene diagram for NASS/CDS Case 2013-74-034. 
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Figure C. 3 Post-crash scene diagram for NASS/CDS Case 2013-12-111. 
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Figure C. 4 Post-crash scene diagram for NASS/CDS Case 2013-49-059. 
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Figure C. 5 Post-crash scene diagram for NASS/CDS Case 2013-12-126. 
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Figure C. 6 Post-crash scene diagram for NASS/CDS Case 2013-04-123



APPENDIX D: EXAMPLE WINBUGS MODEL FOR 

RECONSTRUCTING TRAJECTORIES FROM EDR PRE-CRASH DATA 
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model 

# EDR simulation NHTSA case 2013-49-059 

# Allows for different EDR timings 

# Allows for uncertain reconstructed impact speeds 

# Allows for EDR speed measurement error 

# final adjustments: 

# external prior for vehicle 2 final decel because brakes applied only during final second 

# Ruth and Daily 2011 EDR error model for Ford 

# Vehicle 2 final speed computed from last EDR speed and decelertion 

{ 

 

tau0 <- 1/(sig0*sig0) 

vv1.mph[1] ~ dunif(0,100) 

vv1[1] <- 0 

for (i in 2 : n1) { 

vv1.mph[i] ~ dunif(0,100) 

v1mph.dat[i] ~ dnorm(vv1.mph[i],tau0) 

vv1[i] <- vv1.mph[i]*(88/60) } 

 

# vehicle 1 impact speed from reconstruction 

# vv1[n1+1]<- v1.recon*(88/60) 

tau1 <- 1/(sig1*sig1) 

vv1.last ~ dunif(0,100) 

v1.recon.dat ~ dnorm(vv1.last,tau1) 

vv1[n1+1] <- vv1.last 

 

# vehicle 1 impact speed set equal to most recent precrash speed 

# vv1[n1+1] <- vv1[n1] 

 

for (i in 1:n2) { 

brake2[i] <- step(t02[i]-brakestart2) } 

brake2[n2+1] <- brake2[n2] 

 

# Ruth and Daily 2010 EDR error model 

for (i in 1 : n2) { 

vv2.mph[i] ~ dunif(0,100) 

vv2.bar[i] <- (1-brake2[i])*(-.075+.987*vv2.mph[i]) + brake2[i]*(-1.22 + .987*vv2.mph[i]) 

vv2.tau[i] <- (1-brake2[i])*12.1 + brake2[i]*1.28 

v2mph.dat[i] ~ dnorm(vv2.bar[i],vv2.tau[i]) 

vv2[i] <- vv2.mph[i]*(88/60) } 

 

# for (i in 1:n2) { 
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# vv2.mph[i] ~ dunif(0,100) 

# v2mph.dat[i] ~ dnorm(vv2.mph[i],tau0) 

# vv2[i] <- vv2.mph[i]*(88/60) } 

 

# vehicle 2 impact speed from reconstruction 

# vv2[n2+1] <- v2.recon*(88/60) 

tau2 <- 1/(sig2*sig2) 

# vv2.last~ dunif(0,100) 

# v2.recon.dat ~ dnorm(vv2.last,tau2) 

# vv2[n2+1] <- vv2.last 

 

# vehicle 2 impact speed set equal to most recent precrash speed 

# vv2[n2+1] <- vv2[n2]  

 

for (j in 1:n1-1) { 

delta1[j] <- delta01 

a1[j] <- (vv1[j+1]-vv1[j])/delta1[j]} 

 

for (j in 1:n2-1) { 

delta2[j] <- delta02 

a2[j] <- (vv2[j+1]-vv2[j])/delta2[j] } 

 

# uncertainty in collision times 

 

delta1.t ~ dunif(delta1lo,delta1hi) 

delta2.t ~ dunif(delta2lo,delta2hi) 

 

a1[n1] <- max(-g,(vv1[n1+1]-vv1[n1])/delta1[n1]) 

# a2[n2] <- max(-g,(vv2[n2+1]-vv2[n2])/delta2.t) 

 

# informative prior for vehicle 2 final decel 

f2_final ~ dunif(.7,.9) 

a2[n2] <- -g*f2_final 

# vehicle 2 final acceleration from extrapolation 

# a2[n2] <- a2[n2-1] 

vv2[n2+1] <- vv2[n2]+ a2[n2]*delta2[n2] 

 

# case-specific final delta t's 

 

delta1[n1] <- delta1.t 

delta2[n2] <- delta2.t 
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for (i in 1:n1) { 

d1[i] <- vv1[i]*delta1[i] + (a1[i]*delta1[i]*delta1[i])/2 

t1[i] <- t01[i]+(delta01-delta1[n1]) } 

 

# vehicle 2 time shift for Ford RCMs 

for (i in 1:n2){ 

d2[i] <- vv2[i]*delta2[i] + (a2[i]*delta2[i]*delta2[i])/2 

t2[i] <- t02[i]-delta2[n2] } 

 

t1[n1+1] <- 0 

t2[n2 +1] <- 0 

 

for (i in 1:n1) { xx1[i] <- sum(d1[i:n1])} 

 

for (i in 1:n2){ xx2[i] <- sum(d2[i:n2]) } 

 

# vehicle 1 for GCM SDM 

tstart1lo <- start1inlo + (delta01-delta1[n1]) 

tstart1hi <- start1inhi +(delta01-delta1[n1]) 

# vehicle 2 for Ford RCM 

tstart2lo <- start2inlo -delta2[n2] 

tstart2hi <- start2inhi-delta2[n2] 

 

# tstart1 = time turning vehicle accepts gap 

# tstart2 = time opposing vehicle begins braking 

 

tstart1 ~ dunif(tstart1lo,tstart1hi) 

tstart2 ~ dunif(tstart2lo,tstart2hi) 

 

tc <- abs(tstart1) 

 

tp <- tstart2-tstart1 

 

# interpolation to estimmate opposing vehicle position at time of gap acceptance 

 

for (i in 1:n2-1) { 

tlov[i] <- (i+1)*step(tstart1-t2[i])*step(t2[i+1]+h-tstart1)} 

 

tlo <- min(n2,sum(tlov[])) 

thi <- tlo-1 

 

x2 <- xx2[thi] +( (xx2[thi]-xx2[tlo])/(t2[thi]-t2[tlo]))*(tstart1-t2[thi]) 
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v2 <-  vv2[thi]+((vv2[thi]-vv2[tlo])/(t2[thi]-t2[tlo]))*(tstart1-t2[thi]) 

gap <- x2/v2 

 

       a2.end<- -a2[n2] 

       xbrake <- pow(v2,2)/(2*a2.end) 

       xprt <- v2*tp 

       xstop <- xbrake + xprt 

        stop <- step(x2-xstop) 

        fullhit <- step(xprt-x2) 

        tc1 <- x2/v2 

   vbrake2 <- max(v2*v2-2*a2.end*(x2-xprt),0) 

    vbrake <- sqrt(vbrake2) 

        tc2 <-tp+(v2-vbrake)/a2.end  

        tc0 <- stop*1000+(1-stop)*fullhit*tc1+(1-stop)*(1-fullhit)*tc2 

# crash condition tc-crash.buffter < tc0 < tc 

     v1.last <- vv1[n1+1] 

      crash.buffer <- L1/(2*v1.last) 

 close1 <- step((tc+crash.buffer)-tc0)*step(tc0-tc) 

 phit <- .99999*close1  

 hit ~ dbern(phit) 

 v.impact <- hit*((fullhit*v2)+(1-fullhit)*vbrake) 

} 

 

Data    list(start1inlo=-5,start1inhi=-4,start2inlo=-.5,start2inhi=0, delta1lo = 0, delta1hi=1, delta2lo=0, 

delta2hi=.5,n1=5,n2=11,delta01=1,delta02=.5,h=0.00001,t01=c(-5,-4, -3,-2,-1,0),t02=c(-5,-4.5,-4,-3.5,-3,-

2.5,-2,-1.5,-1,-.5,0),v1.recon.dat=18.9,sig0=1,sig1 =5.3,sig2=8,g=32.2,L1=15,hit=1,brakestart2=0) 

v1mph.dat[] 

0 

2 

10 

17 

22 

END      

v2mph.dat[] 

36 

36 

36.7 

36.7 

37.3 

37.3 

37.3 
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37.9 

38.5 

39.2 

37.9 

END 

Inits list(vv1.last=15,vv1.mph=c(1,2,10,17,22), 

vv2.mph=c(35,35,35,35,35,35,35,35,35,35,35),delta1.t=0.5,delta2.t=0.25,vv1.last=15,tstart1=-4,tstart2=-

.5)] 

 



 

APPENDIX E: LEFT-TURN CRASH SIMULATION MODEL 
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model 

# simulation of conflicts and crashes using random acceptance 

# Robert and Mendota opposing volumes for SB LTs 

# clearance times from regression model 1/22/15 

# IVs=log gap, ML estimates from Minitab; corrected as of 1/16/2015 

# Koppa et al stats of braking and reaction times 

# field statistics for distances, speeds, clearance times 

#  Cowen M3 gaps 

# revised crash criterion 

# simulated accepted gaps 

 

{ 

 

# conflict simulation 

v.sim.mu <- v.bar*(88/60) 

v.sim.tau <- 1/(v.sig*v.sig*(88/60)*(88/60)) 

tc.tau <- 1/(tc.sigma*tc.sigma)  

v.sim ~ dnorm(v.sim.mu,v.sim.tau)I(1,) 

v.sim.mph <- v.sim*(60/88) 

# q.sim <- q.in/3600 

# lambda.sim <- 1/q.sim 

# lambda.sim <- 1/gap.bar 

# gap.sim ~ dexp(lambda.sim) 

u ~ dunif(0,1) 

gap0.sim <- tm-log((1-u)/alpha)/lambda 

littleu <- step((1-alpha)-u) 

gap.sim <-(1- littleu)*gap0.sim + (littleu)*tm 

x.sim <- gap.sim*v.sim 

tc.mu <- tc.beta0+tc.beta1*log(gap.sim)  

tc.sim ~ dlnorm(tc.mu,tc.tau) 

linmod.sim <- beta0 + beta1*log(gap.sim) 

logit(p.sim) <- linmod.sim 

px.sim <- p.sim*step(gap.sim-gap.min) 

# accept.sim <- step(p.sim-u.sim)*step(gap.sim-gap.min) 

accept.sim ~ dbern(px.sim) 

 

# arrival.sim <- (x.sim+x2hit)/(v.sim) 

# conflict1.sim <- accept.sim*step(con.buffer-abs(tc.sim-arrival.sim)) 

ttc.sim <- gap.sim-tc.sim 

conflict2.sim <- step(con.buffer-ttc.sim) 
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# collision simulation 

 g <- 32.2 

 # tp.sim ~dunif(0.5,1.5) 

 # f.sim ~ dunif(.5,.9) 

  

     tp.sigma2 <- log((pow(tp.sd,2)/pow(tp.bar,2))+1) 

     tp.mu <- log(tp.bar)-0.5*tp.sigma2 

     tp.tau <-1/tp.sigma2 

     f.sigma2 <- log((pow(f.sd,2)/pow(f.bar,2))+1) 

     f.mu <- log(f.bar)-0.5*f.sigma2 

     f.tau <- 1/f.sigma2 

 

     tp.sim ~dlnorm(tp.mu,tp.tau) 

     f.sim ~dlnorm(f.mu,f.tau) 

 a.sim <- f.sim*g 

  v.sim.fps <- v.sim 

       x0.sim <- x.sim+x2hit 

       xbrake.sim <- pow(v.sim.fps,2)/(2*a.sim) 

       xprt.sim <- v.sim.fps*tp.sim 

       xstop.sim <- xbrake.sim + xprt.sim 

        stop.sim <- step(x0.sim-xstop.sim) 

        fullhit.sim <- step(xprt.sim-x0.sim) 

        tc1.sim <- x0.sim/v.sim.fps 

   vbrake2.sim <- max(v.sim.fps*v.sim.fps-2*a.sim*(x0.sim-xprt.sim),0) 

        tc2.sim <-tp.sim+(v.sim.fps-sqrt(vbrake2.sim))/a.sim  

       

        tc0.sim <- stop.sim*1000+(1-stop.sim)*fullhit.sim*tc1.sim+(1-stop.sim)*(1-fullhit.sim)*tc2.sim 

# crash condition tc-crash.buffter < tc0 < tc 

 close1.sim <- step(tc0.sim-(tc.sim-crash.buffer))*step(tc.sim-tc0.sim) 

 hit.sim <- accept.sim*close1.sim 

 # phit.sim <- .99999*close1.sim  

 # hit.sim ~ dbern(phit.sim) 

 v.impact <- hit.sim*((fullhit.sim*v.sim)+(1-fullhit.sim)*(sqrt(vbrake2.sim))) 

 

} 

     

Data list(tc.beta0=.4569, tc.beta1=.31524,tc.sigma=.2799, 

con.buffer=1.5,crash.buffer=.5,gap.min=2.5,x2hit=10) 

list(alpha=.612, lambda=.359,tm=2.0) 

list(beta0=-8.2736,beta1=4.8475) 

list(tp.bar=0.6,tp.sd=0.3,f.bar=0.75,f.sd=0.1) 
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list(v.bar=35.6,v.sig=9.0) 

list(accept.sim=1) 

list(hit.sim=1) 

 

Inits list(u =.5,v.sim=50) 
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